High precision pulsar timing : Nançay and the European Pulsar Timing Array

Ismaël Cognard

EPTA and LPC₂E, UMR6115/CNRS/OSUC, Orléans

the 'EPTA' is a collaboration of the largest european radiotelescopes to search for a gravitational waves background using pulsar timing

Cagliari, I, 64m, A.Possenti Effelsberg, G, 100m, M.Kramer Jodrell Bank, UK, 76m, B.Stappers Nançay, F, ~100m, I.Cognard Westerbork, NL, ~100m, J.Hessels

An outstanding stability Numerous applications Detection of a Gravitational Waves Background

A magnetized neutron star

As a lighthouse, two beams of radio waves, emitted along the magnetic axis, sweep the sky as the star rotates, yielding periodic pulses on Earth.

An outstanding stability Numerous applications Detection of a Gravitational Waves Background

An outstanding stability

Period - Period derivative diagram

A first very short life ...

After a birth at \sim 30ms, the pulsar is rapidly slowing down and stops emission after few millions years.

... then eternity !

Those still present in a binary system speed-up by angular momentum transfer, and produce radio waves again, those are

the recycled millisecond pulsars with an outstanding rotational stability !

Alpar et al., Nature 300, 728 (1982)

An outstanding stability Numerous applications Detection of a Gravitational Waves Background

Numerous applications

An extraordinary stability and a very high precision

Together with the exceptional stability of the fatest pulsars, the state-of-the-art coherent dedispersion instrumentations provide times of arrival (ToAs) of radio pulses characterized by a precision as good as \sim 30ns.

Numerous applications

- search for a Gravitational Waves Background
- tests of the different Gravitation theories
- propagation and turbulence in the interstellar medium
- stellar evolution
- globular clusters and gravitational potential of the Galaxy
- constrains on the Solar System ephemeris
- detection of extra-solar planets (3 with PSR B1257+12)
- physique of pulsar emission
- long term stability of terrestrial time scales
- precise link between celestrial references (equatorial and ecliptic)

An outstanding stability Numerous applications Detection of a Gravitational Waves Background

Detection of a Gravitational Waves Background

Many sources...

Supermassive black-hole binary systems Cosmological background relic gravitational waves cosmic strings

Correlation...

Searching for a correlated noise, coming from the effect of the gravitational waves on Earth, on a set of stable pulsars well distributed on the sky. \rightarrow Pulsar Timing Array

(PTA : EPTA, PPTA, ...)

I.Cognard - Nancay High precision pulsar timing

Timing The Nançay pulsar dedispersor ISM limitations

Timing

Analysis of a collection of measured times of arrival (ToAs)

- \rightarrow Having a set of parameters (period, position, etc...),
- \rightarrow computing 'calculated times of arrival',
- \rightarrow fitting the parameters by minimization of the differences (called residuals) between 'measured ToAs' and 'calculated ToAs'
- \rightarrow looking at the residuals to find unmodeled effects...

Timing The Nançay pulsar dedispersor ISM limitations

GPUs based coherent dedispersion at Nançay

Diversion of GPUs

Using high performance graphical card (GPU), 2 PCs / 4 GPUs easily dedisperse bw 128Mhz (512MB/s=4Gb/s) in real time Sept 2010 : a 512MHz version is nearly ready

An ultimate precision

Timing uncertainty can be as good as 30ns for a few pulsars.

A large scale program

Around 50% of the Nançay telescope time More than 200 pulsars monitored More than 20000 observations since Nov 2004 Ultra-stables clocks Instrumentation The Pulsar Timing Array ISM limitations

Effects of the turbulent interstellar medium

in addition to the constant dispersive effect, variable multi-propagation \rightarrow mean pulse received on Earth is a mixture of differently delayed pulses Can we try to correct for those variable delays?

Timing The Nançay pulsar dedispersor ISM limitations

Interstellar holography

PSR B0834+06, Arecibo, 321MHz Dynamical and secondary spectra : data, model and residuals

Impulse response

a high SNR dynamic spectra,

the calcul of the 'secondary spectrum',

and the adjustment of thousands of coefficients describing the electric field provide the impulse response of the medium

Here, multi-propagation delays up to 100 $\,\mu s$ are observed and the pulse has a mean delay ${\sim}15\mu s...$

Walker et al., MNRAS 388, 1214 (2008)

An ultra-stable pulsar Nançay contribution to PTA

The ultra-stable pulsar PSR J1909-3744

I.Cognard - Nancay High precision pulsar timing

An ultra-stable pulsar Nançay contribution to PTA

A major contribution to the Pulsar Timing Array

Many and well done

over 20 stable pulsars regularly timed at Nançay : 10 are better than 1μ s, 5 better than 500ns...

for the EPTA

Nançay is a major contributor to the European Pulsar Timing Array

and... LEAP

Large European Array for Pulsars : ERC funds to build a 'virtual' 200m radiotelescope by coherent addition of the voltages recorded at the five telescopes

Pulsar	Р	Pb	Т	N _{toa}	σ
	(ms)	(days)	(years)		(μs)
J0030+0451	4.87	-	4.6	402	1.84
J0613-0200	3.06	1.2	4.5	280	0.913
J0751+1807	3.48	0.26	4.5	158	1.73
J0900-3144	11.10	18.7	2.0	199	2.87
J1012+5397	5.25	0.6	4.3	107	0.771
J1022+1001	16.45	7.8	4.5	136	1.97
J1024-0719	5.16	_	3.6	128	1.23
J1455-3330	7.99	76.2	4.5	139	2.33
J1600-3053	3.60	14.3	2.8	211	0.495
J1643-1224	4.62	147	4.5	271	1.7
J1713+0747	4.57	67.8	4.5	260	0.350
J1730-2304	8.12	_	4.5	85	1.55
J1744-1134	4.07	_	4.5	87	0.343
J1751-2857	3.91	110.7	3.5	36	0.948
J1824-2452	3.05	_	4.5	313	2.63
J1857+0943	5.36	12.3	4.5	51	0.860
J1909-3744	2.95	1.53	5.2	103	0.111
J1910+1256	4.98	58.4	3.5	31	1.04
J1939+2134	1.55	_	4.5	277	0.483
J2145-0750	16.05	6.84	4.5	159	0.993
J2317+1439	3.44	2.46	4.8	163	2.64

An ultra-stable pulsar Nançay contribution to PTA

Conclusion

Timing of ultra-stable pulsars

is a way to search for a Gravitational Waves Background... With a large collecting area and with an excellent instrumentation, the Nançay radiotelescope is deeply involved in the European Pulsar Timing Array and then within the International PTA : EPTA + Parkes PTA + US NanoGrav