

Response of the Earth system to zonal tidal forcing examined by VLBI based dUT1 variations

Sigrid Böhm

Harald Schuh

- The "zonal response coefficient" basic concept
- Observed dUT1
 - The Vienna VLBI Software VieVS
 - Parameterization
- Estimation of the zonal response coefficient
 - Time series pre-processing
 - Functional model
- Preliminary results
- Summary and conclusions

- V20 latitude dependent part of the tide generating potential (TGP)
 - varies with the declination of the celestial body
 - causes long period tidal deformations (5 days 18.6 years)

Conservation of angular momentum

- Deformation of the Earth gravity field / tensor of inertia is
 - proportional to TGP
- Change in rotational velocity is also
 - proportional to TGP

• Love number k_2

$$\delta V_{20} = k_2 V_{20}$$

$$V_{20} = \frac{a_{20}}{P_{20}} (\cos\theta)$$

• Induced change in δLOD in an elastic spherically symmetric Earth:

$$\frac{\delta LOD}{LOD_0} = -\frac{k_2}{3} \frac{2}{3} \frac{R^3}{GC} \frac{a_{20}}{a_{20}}$$

- C... axial moment
 - of inertia
- G ... grav. Const.
- R... mean Earth radius
- LOD₀ 86400 s

- - frequency dependent, complex-valued
 - Transfer function also includes effects of the oceans, anelasticity of the mantle and fluid core

$$\frac{\delta LOD(\omega)}{LOD_0} = -\kappa(\omega) \frac{2}{3} \frac{R^3}{GC} \frac{a_{20}(\omega)}{a_{20}(\omega)}$$

- - frequency dependent, complex-valued
 - Transfer function also includes effects of the oceans, anelasticity of the mantle and fluid core

$$\delta UT1(\omega) = -\frac{\kappa(\omega)}{i\omega} \frac{1}{3} \frac{2}{GC} \frac{R^3}{GC} \frac{a_{20}(\omega)}{GC}$$

Vienna VLBI Software

- Developed at the Institute of Geodesy and Geophysics of the Vienna University of Technology
- Available for registered users: new users are welcome!

processing setup, graphical user interface data reading theoretical delay, partial derivatives least squares adjustment global solution

simulation tool

Special parameterization: piecewise linear offsets at integer hours:

• dUT1

- 6h interval
- ~3600 sessions (1984-2010.5)

• dUT1 time series pre-processing $\rightarrow \delta UT1$

- "clean" time series from other than tidal signal
- only tides with periods from 5-35 days are considered for the estimation of κ

Functional model

For a spherically symmetric Earth without oceans:

 $\kappa = (\text{stati})k_2 = 0.300$

- + equilibrium ocean (+ 16%)
 - + completely decoupled fluid core (-11%)

 Dynamic oceans, time dependent core-mantle coupling and mantle anelasticity introduce frequency dependence and phase lag:

$$\kappa(\omega\pm\varphi)$$

Values from Chao et al. (1995)

- We re-processed VLBI sessions from 1984-2010.5 using the Vienna VLBI Software VieVS to generate a long dUT1 time series.
- dUT1 variations from 5-35 days were used to derive the zonal response coefficient κ for various tidal frequencies.
- First results for the longer periods (> 14d) agree well with the findings of older studies, e.g. Chao et al. (1995). Most of the κ of terms with periods <10 days seem to have smaller magnitudes with bigger phase lags, but this has to be confirmed by further investigations (because these terms also show larger formal errors).
- More detailed examination is needed, e.g. in terms of pre-processing and reliability of AAM data at short periods, before real statements about the geophysical meaning of the k magnitudes and phases can be made.

sigrid.boehm@tuwien.ac.at

Main tidal periods

	Tide	Period	κ(magn.)± σ	к(phase)± о
		[d]		[°]
	* * * * * * * *	* * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * *
$\mathbf{ \bigcirc}$				
	Mqm	6.86	0.1798 ±0.0382	18.77 ±12.06
	Msqm	7.10	0.2857 ±0.0305	34.21 ±6.16
	Mtm	9.13	0.3476 ±0.0039	8.31 ±0.63
	Mstm	9.56	0.2264 ±0.0190	-20.65 ±4.95
	Mfp	13.63	0.3049 ±0.0013	3.13 ±0.24
	Mf	13.66	0.3147 ±0.0005	3.71 ±0.09
	Msf	14.77	0.3297 ±0.0055	2.78 ±0.99
	Mm	27.56	0.3073 ±0.0005	1.68 ±0.09
➡	Msm	31.81	0.3373 ±0.0022	-0.78 ±0.38
\odot				

