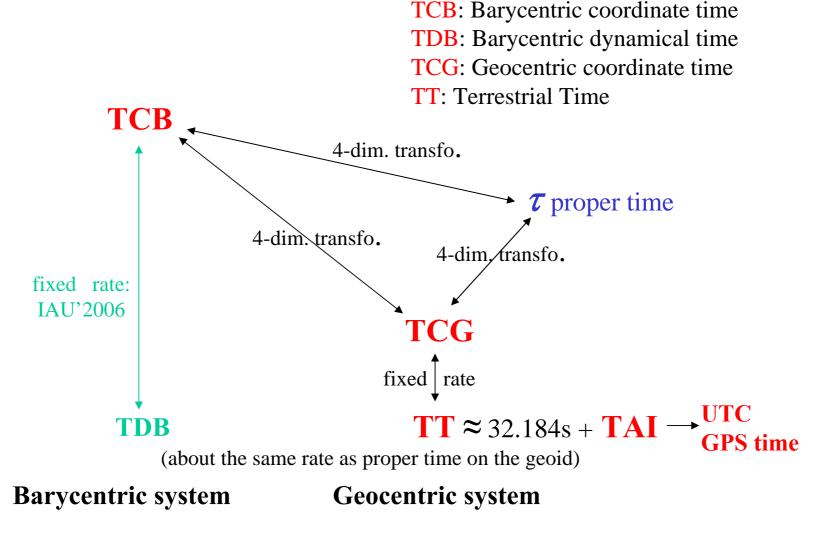
From atomic clocks to coordinate times

Gérard Petit

Bureau International des Poids et Mesures



Proper time - Coordinate time

- Proper time *τ* : defined locally and usable only in the vicinity of the instrument. "what is indicated by the small hand of my watch" (Einstein)
- Coordinate time *T*: globally defined and usable.
- Order of magnitude of "relativistic effects": U/c², v²/c²
 U: gravitational potential v: velocity c: velocity of light
- $d\tau/dT = 1 1/c^2 [U(X,T) + v(X,T)^2/2] + O(c^{-2})$ Transformation depends on time and space position

Time scales in the solar system: definitions

Transformation from proper time to TCB/TDB

• Following IAU2000 B1.3-5 notations

 $d\tau/dTCB = 1 - 1/c^2 (w_0 + w_L + v^2/2) + 1/c^4 [4 w_i v^i + (w_0^2/2 - 3w_0 v^2/2 - v^4/8) + \Delta]$

- The vector potential w^i and the function Δ are given (Note 2) by

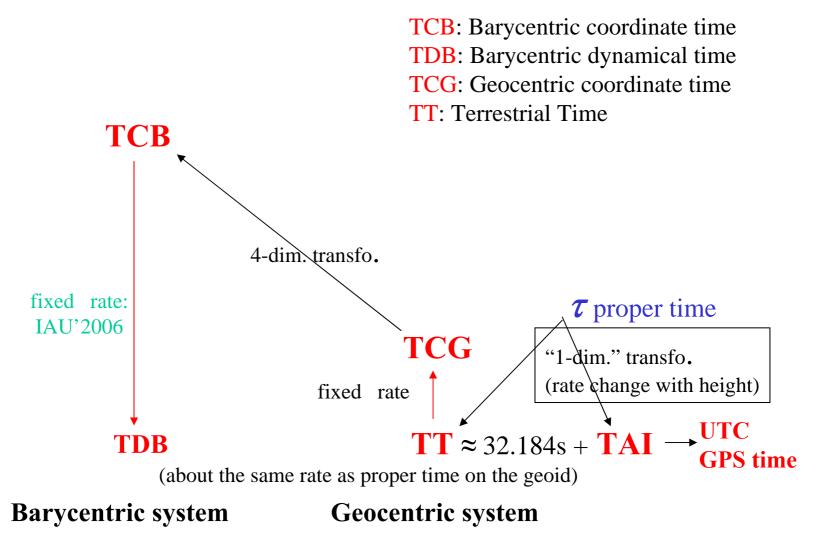
 $w_{A}^{i}(t,\mathbf{x}) = G\left[\frac{-(\mathbf{r}_{A} \times \mathbf{S}_{A})^{i}}{2r_{A}^{3}} + \frac{M_{A}v_{v}^{i}}{r_{A}}\right], \qquad \Delta_{A}(t,\mathbf{x}) = \frac{GM_{A}}{r_{A}}\left[-2v_{a}^{2} + \sum_{B \neq A}\frac{GM_{B}}{r_{BA}} + \frac{1}{2}\left(\frac{(r_{A}^{k}v_{A}^{k})^{2}}{r_{A}^{2}} + r_{A}^{k}a_{A}^{k}\right)\right] + \frac{2Gv_{A}^{k}(\mathbf{r}_{A} \times \mathbf{s}_{A})^{k}}{r_{A}^{3}},$ where \mathbf{S}_{A} is the total angular momentum of body A, v_{A} and a_{A} are the coordinate velocity and acceleration of body A.

- Orders of magnitude:
 - Validity = a few 10^{-18}
 - Terms in $1/c^4$: a few 10^{-16}
- IAU'2006: $d\tau/dTDB = d\tau/dTCB / (1 L_B)$

Transformation from proper time to TCG/TT

General considerations based on formulas to 1/c² (valid for 10⁻¹⁸)

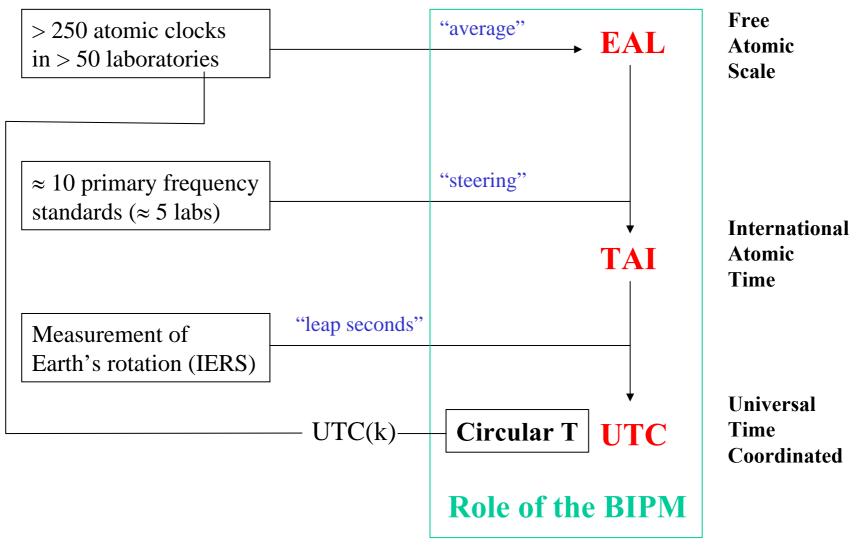
- For a clock in space
- $d\tau/dTCG = 1 1/c^2 [U_E(X) + v^2/2 + U(x_E + X) U(x_E) U_{,k}(x_E) X^k]$ $\Rightarrow d\tau/dTT = d\tau/dTCG / (1 - L_G)$


Make consistent computation of geopotential model (U_E) and of tidal (last 3) terms (where U is the potential due to external bodies) But no problem linked to the geoid

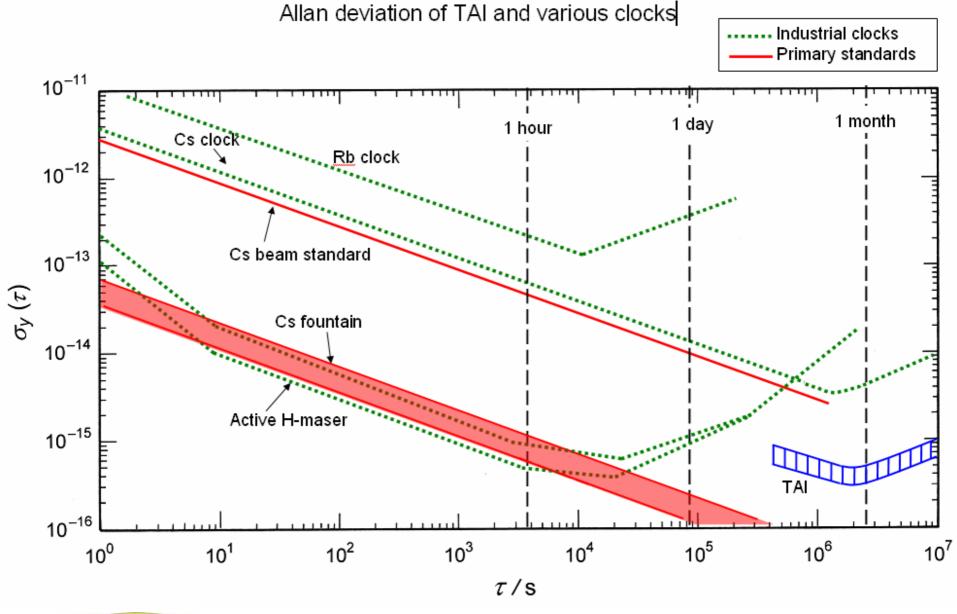
• For a clock on Earth $d\tau/dTCG = 1 - 1/c^2 [U_g - \int g dh + U(x_E + X) - U(x_E) - U_{,k}(x_E) X^k]$ $\Rightarrow d\tau/dTT = (d\tau/dTCG)/(1 - L_G)$ Still questions linked to the geoid: how to realize it?

• In practice:
$$d\tau/dTT = 1 + 1/c^2 \int g dh$$

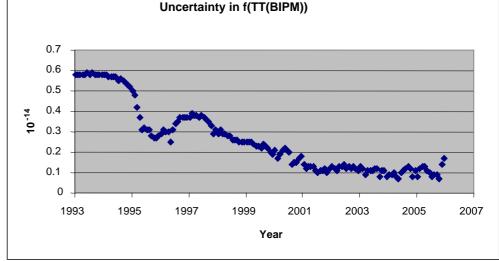
 $\Rightarrow d\tau/dTCG = (d\tau/dTT) \times (1 - L_G)$



Time scales in the solar system: Realization (2006)



Elaboration of TAI and UTC

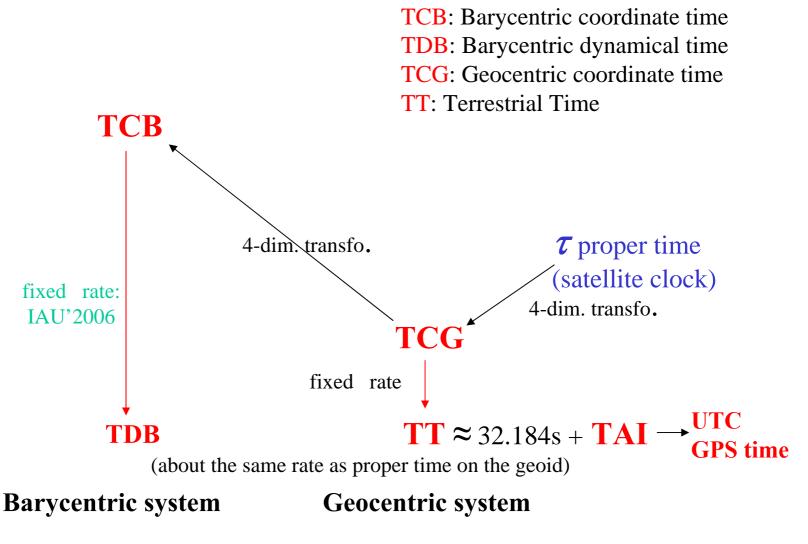

Terrestrial Time and its realizations

- TT is 'ideal' and should be distinguished from its realizations (really available time scales).
- Two realizations of TT:
 - TT = TAI + 32.184 s available in "real time"
 - TT(BIPMxx) post-processed
 - Post-processed after the end of year 20xx using all available PFS data
 - Each month, PFS evaluations (within +/- 1 year) are used to estimate f(EAL). In this process, the instability of EAL adds some noise.
 - Monthly estimations of f(EAL) are smoothed and integrated to obtain [EAL-TT(BIPMxx)](t).

The frequency accuracy of TT(BIPMxx)

• Frequency accuracy: decreases from $6x10^{-15}$ in 1993-1994 to about $1x10^{-15}$ since 2001. Uncertainty in f(TT(BIPM))

- Limitations:
 - Sparse data from Cs fountains
 - Noise from frequency transfer techniques over the duration of fountain operation.
- $< 5x10^{-16}$ should be possible now.
- Reaching 1×10^{-16} will require several improvements



Frequency accuracy: future prospects

- Present definition based on Cs transition may be limited to about 1×10^{-16} because of uncertainty in collisional shift + other.
- Other transitions promise better reproducibility => candidate for new definition of the second (or secondary representations)
 - Hyperfine transition in Rb
 - Optical transitions in atoms Yb, Sr, Ca, ...
 - Optical transitions in trapped ions Yb⁺, Hg⁺, Sr⁺, Al⁺, ...
 - e.g. Hg⁺ to Al⁺ comparison at NIST $< 1x10^{-16}$ uncertainty
- Problems to transfer this accuracy to a time scale:
 - Stability of a continuous time scale (now 10^{-16}).
 - Uncertainty is time/frequency transfer techniques (now 10⁻¹⁶)
 - Uncertainty in transformation from proper to coordinate time (now 10⁻¹⁷ on Earth)
- Reaching 10⁻¹⁷ will be a challenge

Time scales in the solar system: Future realization?

Conclusions

- Time scales in the solar system: 1x10⁻¹⁵ achieved, 10⁻¹⁶ level under exploration.
- Going to 1×10^{-16} should be possible without major changes.
- Going to 1×10^{-17} (and beyond) will mean
 - New clock transitions
 - Space clocks
 - New comparison techniques
- Beyond 1x10⁻¹⁷, limitations in the theoretical framework will need to be reviewed.

