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Abstract. A new precession-nutation model for the Celestial Intermediate Pole (CIP) was adopted by the IAU in 2000
(Resolution B1.6). The model, designated IAU 2000A, includes a nutation series for a non-rigid Earth and corrections for the
precession rates in longitude and obliquity. The model also specifies numerical values for the pole offsets at J2000.0 between
the mean equatorial frame and the Geocentric Celestial Reference System (GCRS). In this paper, we discuss precession models
consistent with IAU 2000A precession-nutation (i.e. MHB 2000, provided by Mathews et al. 2002) and we provide a range of
expressions that implement them. The final precession model, designated P03, is a possible replacement for the precession com-
ponent of IAU 2000A, offering improved dynamical consistency and a better basis for future improvement. As a preliminary
step, we present our expressions for the currently used precession quantitiesζA , θA , zA, in agreement with the MHB corrections
to the precession rates, that appear in the IERS Conventions 2000. We then discuss a more sophisticated method for improving
the precession model of the equator in order that it be compliant with the IAU 2000A model. In contrast to the first method,
which is based on corrections to thet terms of the developments for the precession quantities in longitude and obliquity, this
method also uses corrections to their higher degree terms. It is essential that this be used in conjunction with an improved
model for the ecliptic precession, which is expected, given the known discrepancies in the IAU 1976 expressions, to contribute
in a significant way to these higher degree terms. With this aim in view, we have developed new expressions for the motion of
the ecliptic with respect to the fixed ecliptic using the developments from Simon et al. (1994) and Williams (1994) and with
improved constants fitted to the most recent numerical planetary ephemerides. We have then used these new expressions for
the ecliptic together with the MHB corrections to precession rates to solve the precession equations for providing new solution
for the precession of the equator that is dynamically consistent and compliant with IAU 2000. A number of perturbing effects
have first been removed from the MHB estimates in order to get the physical quantities needed in the equations as integration
constants. The equations have then been solved in a similar way to Lieske et al. (1977) and Williams (1994), based on similar
theoretical expressions for the contributions to precession rates, revised by using MHB values. Once improved expressions
have been obtained for the precession of the ecliptic and the equator, we discuss the most suitable precession quantities to be
considered in order to be based on the minimum number of variables and to be the best adapted to the most recent models and
observations. Finally we provide developments for these quantities, denoted the P03 solution, including a revised Sidereal Time
expression.
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1. Introduction

The IAU precession-nutation model in use until the imple-
mentation of the IAU 2000 Resolutions was composed of the
IAU 1976 precession (Lieske et al. 1977) and IAU 1980 nu-
tation (Wahr 1981; Seidelmann 1982). IAU Resolution B1.6
adopted in 2000 recommended that these models be replaced,
beginning on 1 January 2003, by the IAU 2000 precession-
nutation model: specifically the MHB 2000 model provided
in Mathews et al. (2002) designated IAU 2000A or, for
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applications not requiring the utmost accuracy, its shorter ver-
sion IAU 2000B.

The IAU 2000 precession-nutation model includes a new
nutation series for a non-rigid Earth and corrections to
the precession rates in longitude and obliquity. The revised
precession-nutation model is oriented with respect to the
International Celestial Reference System (ICRS) through a
fixed 3D rotation between the mean equatorial frame at J2000.0
and the Geocentric Celestial Reference System (GCRS). This
rotation, called theframe bias,includes the numerical values
for the pole offset at J2000.0 that MHB 2000 specifies and a
third number, the equinox offset at J2000.0, that MHB 2000
does not specify. The adopted equinox offset has only a
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second-order effect on the final transformation between celes-
tial and terrestrial coordinates.

IAU Resolution B1.7 recommended that the motion of the
Celestial Intermediate Pole (CIP) in the GCRS be realized “by
the IAU 2000A model for precession and forced nutation for
periods greater than two days plus additional time-dependent
corrections provided by the International Earth Rotation and
Reference Systems Service IERS (IERS) through appropriate
astro-geodetic observations” (i.e. through VLBI observations).

It should be noted that the pre-2003 VLBI procedures used
the IAU 1976 precession and the “total” nutations (i.e. the nuta-
tions themselves plus the contribution of the corrections to the
precession rates plus the biases) and omitted the equinox off-
set. Consequently the MHB 2000 model left room for interpre-
tation, in respect of how the frame bias was to be implemented,
how the new precession rates were to be applied and, in partic-
ular, what was to be done about the unspecified equinox offset.

The implementations of the precession-nutation models
IAU 2000A and B set out in the IERS Conventions 2000 follow
the straightforward approach of updating the secular terms of
precession only. Corresponding software implementations ex-
ist (IERS and Standards Of Fundamental Astronomy (SOFA))
and offer a variety of tools catering for a wide variety of appli-
cations, both classical and “CEO-based” (i.e. based on the use
of the Celestial Ephemeris Origin (CEO), cf. Sect. 2). These in-
terpretations of the IAU 2000 resolution, although of practical
utility for the next few years, are in fact dynamically inconsis-
tent and suffer, except of course for the improvements in the
precession rates, from the same limitations as the IAU 1976
precession in the precision of the coefficients and compliance
with up to date models for the ecliptic motion.

An improved IAU 2000 precession model is therefore nec-
essary. With the MHB 2000 precession rates as a starting point,
it is possible to develop precession quantities consistent with
IAU 2000 that are dynamically consistent. This requires solu-
tion of the dynamical equations for the precession motion of
the celestial pole based on the MHB 2000 precession rates and
on improved expressions for the motion of the ecliptic.

As well as more accurate models for the precession per se,
additional products are possible, such as simple polynomial-
based algorithms for generating the rotation matrix and mean-
poleX,Y that combine the frame bias and the precession.

In this paper we present expressions for the precession
quantities consistent with the IAU 2000A model, as recom-
mended in IAU 2000 Resolution B1.6, following the approach
described above. Our approach makes a clear distinction be-
tween the precession of the ecliptic due to planetary perturba-
tions and the precession of the equator due to the luni-solar
and planetary torques on the oblate Earth, both motions being
expressed with respect to inertial space.

We will use abbreviations for quoting papers to which we
often refer in this work. These are respectively L77 for Lieske
et al. (1977), MHB for Mathews et al. (2002), S94 for Simon
et al. (1994) and W94 for Williams (1994). The present paper
is designated P03.

Note that L77 uses a two-epoch formulation, allowing
mean place at some starting epoch to be transformed to mean
place at some final epoch without the requirement for either

epoch to be J2000. In their formulation,t is time from the fun-
damental epoch J2000 to the final epoch, whereasT represents
time from the starting epoch to J2000. Given the pre-eminence
of J2000 as the fundamental epoch, it is now reasonable to re-
ject the two-epoch approach as an unnecessary complication,
especially as the same result can be achieved by two succes-
sive transformations, the first from the starting epoch to J2000
and the second from J2000 to the final epoch. For several years
the IERS Conventions have provided developments for the sin-
gle time argumentt from the J2000.0 epoch, and so does W94
for the revised developments. It seems clear that the future de-
velopments for precession will use a single time argument, and
we shall follow this approach here.

The final expressions provided in this paper are denoted
“the P03 solutions”. They include (i) expressions (37) and (38)
for the primary precession quantities relative to the ecliptic
and equator, respectively, (ii) expressions (39) to (41) for the
derived precession quantities for classical use, (iii) expres-
sions (45), (49) and (50) for alternative quantities and (iv) ex-
pressions (42) and (43) for revised Sidereal Time. Note that the
unit of time used in all the expressions of the paper is Julian
century, denoted cy.

2. Transformation formulas

There are two equivalent bias-precession-nutation transforma-
tions from GCRS to ITRS, namely the new (CEO-based) trans-
formation and the classical (equinox-based) transformation.
These transformations are based on two different origins on the
equator with quite different properties. The equinox is defined
geometrically and has a complex and comparatively rapid mo-
tion along the instantaneous equator that is a consequence of
the motion not only of the moving equator but of the mov-
ing ecliptic as well. The CEO, which is an implementation
of the non-rotating origin (Guinot 1979) as recommended in
IAU 2000 Resolution B1.8, in contrast is defined kinemati-
cally: from one moment to the next, it moves only at right-
angles to the instantaneous equator, and no ecliptic is involved.
This almost complete separation between the treatment of the
precessing-nutating pole and the origin of “right ascension”
leads to a much simpler relationship between stellar hour an-
gles and Universal Time (for more detail, see for example
Capitaine et al. 2003a).

We use the symbolR for the GCRS-to-ITRS rotation ma-
trix, omitting polar motion, with elementsR(i, j).

Using the usual notation, the CEO-based transformation is
written as:

Rnew = R3(θ − E − s) · R2(d) · R3(E), (1)

whereθ is the Earth Rotation Angle and

E = arctan(Y/X),

d = arctan
(((

X2 + Y2
) / (

1− X2 − Y2
))1/2)

.
(2)

X(t) andY(t) are the components of the CIP unit vector in the
GCRS, based on the IAU 2000A precession-nutation model
and the corresponding biases (ξ0, η0) and equinox offset at
epochdα0, andsprovides the position of the CEO.
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For practical reasons,X andY are usually called “coordi-
nates” and their numerical expressions are multiplied by the
factor 1 296 000′′/2π in order to provide in arcseconds the
value of the corresponding “angles” (strictly their sines) with
respect to thez-axis of the GCRS.

The classical form of the transformation is written as

Rclass= T N P B, (3)

i.e. as the product of the individual rotation matricesB (bias)
followed by P (precession) thenN (nutation) and finallyT
(Earth rotation):

B = R1(−η0) · R2(ξ0) · R3(dα0),
P = R3(χA) · R1(−ωA) · R3(−ψA) · R1(ε0),
N = R1(−[εA + ∆ε]) · R3(−∆ψ) · R1(εA)
T = R3(GST).

(4)

The classical precession quantitiesψA,ωA, εA andχA are those
defined by L77 and the nutation quantities∆ψ and∆ε are the
luni-solar and planetary nutations. GST is Greenwich (appar-
ent) Sidereal Time. Note that the precession matrix,P, can be
formed in several ways (W94), depending on which of the pre-
cession angles are used.

The four-angle formulation given above was chosen for the
IERS/SOFA implementation of IAU 2000 (Sect. 4) because it
enabled the specified precession-rate adjustments to be applied
directly and unambiguously. In the case of the present work
that is no longer a consideration and other choices are open.
For example, the most common method is the three-angle for-
mulation usingζA, θA andzA:

P = R3(−zA) · R2(+θA) · R3(−ζA). (5)

A revision of this 3-rotation formulation could bring some of
the benefits of the MHB 2000 corrections to existing users
without forcing them to make major changes to their proce-
dures. However, this advantage would only be realized if the
frame bias could be taken care of at the same time, and it turns
out that this is not straightforward. The possibility of a con-
cise formulation that does take into account both precession
and frame bias will be considered in Sect. 7.3.1.

3. The IAU 1976 precession

3.1. Basis of the developments for precession

The development of the precession quantities depends upon
models for the dynamical motion of (i) the ecliptic pole,
relative to a fixed ecliptic, due to planetary perturbations
and (ii) the celestial pole, due to luni-solar and planetary
torques on the oblate Earth.

The basic quantities for the motion of the mean ecliptic
pole are sinπA sinΠA and sinπA cosΠA, which express the
components of the Earth’s orbital angular momentum upon a
fixed ecliptic and which depend on the set of planetary masses
adopted.

The basic quantities for the precession of the equator are
the anglesψA andωA of L77 that, although thought of as be-
ing the luni-solar precession in longitude and obliquity respec-
tively, are actually the orientation parameters of the mean equa-
tor of date in the mean ecliptic frame at epoch. Note that the

additional precession quantities considered in (4) areεA (mean
obliquity of date) for the inclination of the mean equator of date
on the ecliptic of date andχA (the so-called “planetary preces-
sion”) for the contribution to the motion of the equinox that is
dueonly to the precession of the ecliptic.

A model for the motion of the celestial pole can be derived
from the dynamical equation (see Eq. (14) of L77) express-
ing the motion of the mean pole of date about the ecliptic pole,
once given the values at the reference epoch for the mean obliq-
uity of the ecliptic,ε0, for the speed of precession, and for the
geodesic precession (de Sitter & Brouwer 1938). The expres-
sion for general precession (denotedpA in L77) combines the
precession in longitude of the equator and the precession of the
ecliptic, the former being a function of the Earth’s dynamical
flattening and other constants related to orbital motion of the
Moon and the Earth (see for example Kinoshita 1977; Dehant
& Capitaine 1997). The geodesic precession is a general rela-
tivistic effect related to the rotation of the geocentric reference
system with respect to the solar-system barycentric reference
system (see for example Brumberg 1991).

3.2. The Lieske et al. (1977) expressions
for the quantities

Expressions for the precession quantities, both for the equator
and the ecliptic, were provided by L77 to be in agreement with
the 1976 System of Astronomical Constants. These expressions
are based on the 1976 values for the planetary masses, preces-
sion constant and J2000 obliquity, as well as on Newcomb’s
expression for the motion of the ecliptic.

The value for the precession constant was an observation-
ally determined value of Newcomb’s precessional constant, or
rather speed of general precession in longitude, the precise
interpretation of which is not obvious (Fricke 1971; Lieske
1985). The value for the geodesic precession is that of de Sitter
& Brouwer (1938),pg = 1′′.92/cy.

The following L77 expressions provide the precession of
the equator, based on the different angles mentioned in the pre-
vious section, the equatorial precession angles provided by (7)
being the most often used in practice:

ψA = 5038′′.7784t − 1′′.07259t2 − 0′′.001147t3

ωA = ε0 + 0′′.05127t2 − 0′′.007726t3

εA = ε0 − 46′′.8150t − 0′′.00059t2 + 0′′.001813t3

χA = 10′′.5526t − 2′′.38064t2 − 0′′.001125t3, (6)

with ε0 = 84381′′.448 for the obliquity at J2000.0, or
alternatively:

ζA = 2306′′.2181t + 0′′.30188t2 + 0′′.017998t3

θA = 2004′′.3109t − 0′′.42665t2 − 0′′.041833t3

zA = 2306′′.2181t + 1′′.09468t2 + 0′′.018203t3. (7)

The parametert, used in the above expressions as well as
in those below, is the elapsed time in Julian centuries since
J2000 TT, defined by:

t = (TT − 2000 January 1d 12h TT)/36 525, (8)

with TT in days.
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3.3. Limitations

The IAU 1976 precession model has the following limitations:

(i) The expressions are based on numerical values for the pre-
cession rates which have been shown from VLBI observa-
tions to be in error by about−3 mas/year in longitude and
−0.25 mas/year in obliquity. The theoretical basis for the
precession rate in obliquity, neglected in previous theories,
has been developed in W94.

(ii) The expressions are based on the 1976 value for the obliq-
uity at J2000.0 which is known, based on LLR and plane-
tary observations, to be in error by 0′′.04.

(iii) It uses the motion of the ecliptic which is based on
Newcomb’s solution and on the 1976 values for the plan-
etary masses, whereas more recent analytical solutions for
the ecliptic and improved numerical values for the plane-
tary masses have been available for at least a decade.

(iv) The numerical values of the coefficients in the expressions
are given with a resolution of 0.1 milliarcsecond after a
century, whereas the amplitudes of the MHB 2000 nuta-
tion are provided with 0.1 microarcsecond resolution.

(v) The numerical expression for the geodesic precession is
limited to the secular term which itself has a precision of
the order of 0′′.01/cy.

(vi) The developments of the expressions are limited to the
third degree int.

The error in the precession of the equator resulting from (i) is
of the order of 0′′.3/cy in longitude and 0′′.025/cy in obliquity;
the error in the precession of the ecliptic resulting from (ii)
and (iii) is of the order of 0′′.002/cy, 80% of the effect coming
from the use of an improved theory and 20% from the use of
improved values for the planetary masses.

Moreover, it has been shown that the 3-rotation and
4-rotation transformations using the L77 quantities (expres-
sions (6) and (7)) show disagreement at 1 mas level over 2 cen-
turies. See Capitaine et al. 2003a for more detail.

4. The IAU 2000 precession

4.1. The MHB 2000 model

The IAU 2000A Precession-Nutation model was adopted
by IAU 2000 Resolution B1.6 to replace the IAU 1976
Precession (L77) and the IAU 1980 Theory of Nutation.
The nutation series was generated by the convolution of the
MHB 2000 transfer function with the rigid-Earth nutation se-
ries REN-2000 (Souchay et al. 1999), rescaled to account for
the change in the dynamical ellipticity of the Earth implied
by the observed correction to the lunisolar precession of the
equator. It is based upon basic Earth parameters estimated from
VLBI observations.

The resulting nutation series includes 678 lunisolar terms
and 687 planetary terms and provides the direction of the ce-
lestial pole in the GCRS with an observed accuracy of 0.2 mas.
The series includes the geodesic nutation (Fukushima 1991).
On the other hand, the Free Core Nutation (FCN), which can-
not be predicted rigorously, is not included in the IAU 2000A

model, and sets a fundamental “noise level” of a fraction of
1 mas if IAU 2000A is used as it is.

It should be noted that the IAU 2000A nutation series in-
clude nutations with very long periods (i.e. > 250 years) the
contribution of which can be approximated, inµas, as:

dψ = −1146− 159t

dε = +1141− 30t. (9)

In former precession-nutation models these long-period effects
were included in the precession part. In models compliant with
MHB 2000, the presence of these terms in the nutation part
causes compensating changes in the precession part.

The IAU 2000 nutation series is associated with improved
numerical values for the precession rate of the equator in lon-
gitude and obliquity:

δψA = (−0.29965± 0.00040)′′/cy

δωA = (−0.02524± 0.00010)′′/cy. (10)

4.2. The frame bias at J2000

The IAU 2000 precession-nutation is associated with the con-
stant offsetsδψ0 andδε0 of the direction of the CIP at J2000.0
from the direction of the pole of the GCRS, which have been
estimated from VLBI data (Herring et al. 2002):

δψ0 = (−0.0417750± 0.000025)′′

δε0 = (−0.0068192± 0.0000100)′′. (11)

In contrast,dα0, the offset in right ascension of the mean equa-
torial frame with respect to the GCRS, cannot be derived di-
rectly from VLBI observations, which are insensitive at the first
order to the position of the ecliptic. The determination of this
offset thus requires the use of observations which are depen-
dent on the position of the ecliptic. To take proper account of
the equinox offset, it is necessary to use an equinox that (i) cor-
responds to an ecliptic dynamically consistent with the IAU’s
adopted precession-nutation model and (ii) can be provided by
high accuracy observations.

The numerical value that has been used for the implemen-
tation of the IAU 2000 precession-nutation model is the GCRS
right ascension of the mean dynamical equinox at J2000 as pro-
vided by Chapront et al. (2002) from a fit to LLR observations
based jointly on the use of a dynamical theory for the Moon
and of VLBI Earth orientation parameters:

dα0 = (−0.0146± 0.0005)′′. (12)

This value (12) for the equinox offset fulfils condition (i) as
the MHB precession and nutation is based on the theory of the
Earth’s rotation for a rigid Earth (Souchay et al. 1999) which
uses the analytical theories for the planets and the Moon and
then refers to the same dynamical equinox (S94). It fulfils con-
dition (ii) as the accuracy of the estimation is at least 20 times
better than the previously available ones.

Note that the mean equinox of epoch derived in this
way corresponds to the definition of the ecliptic in its “in-
ertial” sense, i.e. based on the motion of the orbital angular-
momentum vector of the Earth-Moon barycenter. It differs by
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about 94 mas from the “rotational dynamical mean equinox
of J2000.0” (Standish 1981) as used in the past when re-
ferring to the FK5 equinox or to the origin of the JPL
ephemerides DE200 and the ICRS position of which has been
provided with an uncertainty of 10 mas by Folkner et al. (1994).

In the following, we will first deal with the part of the
MHB 2000 model due to precession. We will then consider
the polynomial part of the motion of the Celestial Intermediate
Pole (CIP) with respect to the GCRS, including precession
and bias.

4.3. Basic IAU 2000 expressions for precession

The most straightforward way to interpret the precession part
of IAU 2000A is simply to add the longitude and obliquity rates
to the existing L77 series forψA andωA. The canonical formu-
lation for the IAU 2000 precession matrix is thus naturally the
4-rotation one (see relations (4)), involvingε0, ψA, ωA andχA.

The IAU 2000 expressions for the classical quantitiesψA

andωA have been provided in the IERS Conventions 2000 and
should be regarded as the “defining model”, upon which the
IERS and SOFA implementations are based:

ψA = 5038′′.47875t − 1′′.07259t2 − 0′′.001147t3

ωA = ε0 − 0′′.02524t + 0′′.05127t2 − 0′′.007726t3, (13)

with ε0 = 84381′′.448.
Following such an approach, the above MHB 2000 pre-

cession corrections have also to be used to correct the linear
terms (noted by index 1) of the quantitiesεA (obliquity of the
equator on the moving ecliptic) andpA (general precession in
longitude), whereas the expression forχA is unchanged. By
adding the corrections dω1 to εA1 and dψ1 to pA1, respectively,
one obtains:
pA = 5028′′.79695t − 1′′.11113t2 − 0′′.000006t3

εA = ε0 − 46′′.84024t − 0′′.00059t2 + 0′′.001813t3

χA = 10′′.5526t − 2′′.38064t2 − 0′′.001125t3. (14)

4.4. Expression for the IAU 2000A precession based
on the X, Y coordinates of the CIP

The coordinatesX andY of the CIP in the GCRS have been
developed (Capitaine et al. 2003a) to be consistent with the
IAU 2000A nutation series and the basic expressions (13)
for IAU 2000 precession. They used expression (12) for the
equinox offset at J2000.0 and the celestial pole offsets at
J2000.0,ξ0 andη0, which are derived from (11) as:

ξ0 = (−0.016617± 0.000010)′′

η0 = (−0.006819± 0.000010)′′. (15)

The IAU 2000A X andY expressions, provided in the IERS
Conventions 2000, have the following form:

XIAU2000 = −0′′.016617+ 2004′′.191743t − 0′′.4272191t2

− 0′′.19862054t3 − 0′′.00004605t4

+ 0′′.00000598t5 +
∑

i

2∑
j=0

[
(as, j)i t

j sin(ARG)

+(ac, j)i t
j cos(ARG)

]
+ · · · , (16)

YIAU2000 = −0′′.006951− 0′′.025382t − 22′′.4072510t2

+ 0′′.00184228t3 + 0′′.00111306t4

+ 0′′.00000099t5 +
∑

i

2∑
j=0

[
(bc, j)i t

j cos(ARG)

+(bs, j)i t
j sin(ARG)

]
+ · · · (17)

ARG stands for various combinations of the fundamental ar-
guments of the nutation theory, including both luni-solar and
planetary terms.

Taking into account precession only, these expressions, de-
noted P00, become:

XP00 = −0′′.016617+ 2004′′.191747t − 0′′.4272191t2

− 0′′.19862054t3 − 0′′.00004605t4

+0′′.00000598t5, (18)

YP00 = −0′′.006819− 0′′.025382t − 22′′.4072510t2

+ 0′′.00184228t3 + 0′′.00111306t4

+0′′.00000099t5. (19)

This shows that the polynomial part of theX andY CIP coor-
dinates originate from precession, except for the contribution
from the frame bias and from cross nutation terms. The latter
contribute as a constant term inY of 132µas and a secular term
in X of 4 µas per century.

The contributions dXbias and dYbias from the frame biases
in X andY are (inµas):

dXbias= − 16617− 2 t2 + 1 cosΩ,

dYbias= − 6819 − 142t + 1 sinΩ, (20)

the first term in each coordinate being the contribution from
the celestial pole offset at J2000 and the following ones from
the frame bias in right ascension. As these contributions are
included in the Earth Orientation Parameters which are derived
from VLBI observations, it appears preferable to consider the
complete polynomial part of the expressions without separating
precession, nutation and biases.

4.5. IAU 2000 expressions for the quantities zA, ζA, θA

The computation of improved expressions for the currently
used precession quantitieszA, ζA and θA can be derived in
several ways from expressions (13) and (14) based on ana-
lytical or numerical solutions. The purpose is to provide ex-
pressions which are numerically equivalent to the 4-rotation
expressions, based on the MHB corrections to the precession
rates inψ andω, at one level of accuracy less than the MHB
corrections themselves (i.e. 30µas/cy). This can be done in a
semi-analytical way by solving the expressions for these quan-
tities from the relations in the spherical triangles (Woolard &
Clemence 1966) using, as basic developments, those forψA

andωA; this was carried out using the softwareGREGOIREas
a tool. The transformation can also be done numerically, by
sampling the precession matrix throughout a chosen interval,
decomposing the matrix into the three Euler angles concerned,
and fitting polynomials int. The results are quite consistent at
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the microarcsecond level over several centuries. Our approach
was to use just enough terms, and coefficients with just enough
precision, to match the resolution of the IAU 2000A model.
The order of polynomial to be used was found to bet5 and the
precision of the coefficients 0.1 µas. The following series with
a 0.1 µas level of precision matches the canonical 4-rotation
series to sub-microarcsecond accuracy over 4 centuries:

ζA = 2′′.5976176+ 2306′′.0809506t + 0′′.3019015t2

+0′′.0179663t3 − 0′′.0000327t4 − 0′′.0000002t5

zA = −2′′.5976176+ 2306′′.0803226t + 1′′.0947790t2

+0′′.0182273t3 + 0′′.0000470t4 − 0′′.0000003t5

θA = 2004′′.1917476t − 0′′.4269353t2 − 0′′.0418251t3

−0′′.0000601t4 − 0′′.0000001t5. (21)

These expressions have therefore been proposed as quantities
of precession consistent with the IAU 2000A model, and were
provided in the IERS Conventions 2000.

5. Precession-nutation models post IAU 2000

5.1. Areas of possible improvement

The only corrections that have been applied in the above calcu-
lations in order to be consistent with the IAU 2000A model are
the MHB corrections to precession rates in longitude and obliq-
uity. The value used forε0, as well as the expressions used for
the motion of the ecliptic and for the other quantities of preces-
sion, were those of L77 (i.e. IAU 1976).

Such an approach is not satisfactory from a dynamical point
of view because the precession rate corrections are understood
only as a representation of linear terms in the observables and
not as physical quantities. Moreover, such a precession model
suffers, except for the precession rates, from the limitations of
the IAU 1976 model mentioned in Sect. 3.3 and especially re-
garding the model for the precession of the ecliptic.

As noted by Woolard & Clemence (1966), the motion of
the equator and the motion of the ecliptic arekinematicallyin-
dependent of each other, but to a small extent the secular varia-
tion in the motion of the equator dependsdynamicallyupon the
variations of the disturbing forces caused by the change in the
average positions of the Sun and the Moon with the motion of
the ecliptic. The improvement of the model for the precession
of the equator therefore requires the use of an improved model
for the motion of the ecliptic.

Based on the MHB corrections to the precession rates, the
precession of the equator can be obtained in a more dynami-
cally consistent way. The solution has to be based on:

(i) improved expressions for the motion of the ecliptic,
(ii) improved expressions for the contributions to precession

and obliquity rates of the equator with respect to a fixed
frame such as those provided in W94,

(iii) the MHB estimates for the dynamical ellipticity of the
Earth and for the effect of non-rigidity.

A more accurate expression for the geodesic precession is also
required (Brumberg 1991) in order that it be consistent with the

same level of accuracy as the other precession expressions. The
following points should be noted:

1) Such further improvement, based on the MHB 2000 cor-
rections to precession rates, complies with the recommenda-
tions of IAU 2000 Resolution B1.6, which encourages the de-
velopment of new expressions for precession consistent with
the IAU 2000A model.

2) An improved GMST expression would also be necessary
as the expression directly depends on the precession in right
ascension. On the other hand, neither the periodic part of the
expression for the position of the CEO in the GCRS, nor that
for the complementary terms in the equation of the equinoxes,
will have to be modified, as the expected corrections to preces-
sion are below the sensitivity of the terms of these expressions
to the precession quantities.

3) Regarding expressions (14), the formula forpA is no
longer appropriate as the primary expression for precession,
and the expression forχA is useful only as an intermediate in
the coordinate transformation between TRS and CRS, as its ef-
fect is canceled out in the GST expression.

5.2. Method for improving the model
for the precession of the equator

In contrast to the previous approach, a physical meaning can
be given to the corrections to precession rates. The MHB cor-
rection dψ1 is then considered to be a correction to the speed
of the mean celestial pole of date, P, about the ecliptic pole C
(see Woolard & Clemence 1966 or L77) and dω1 as the obliq-
uity rate contribution with respect to inertial space (see W94).
This provides improved constants for the precession model of
the equator to be used in the kinematical relations.

This approach is more complicated, but more satisfactory
than the previous one from a theoretical point of view. Its use
does not mean that the observations are considered to be sen-
sitive to an ecliptic. It means only that VLBI estimated cor-
rections (dψ1 and dω1) to the precession rates with respect to
a fixed ecliptic are used as constants of integration in solving
the equations, thus providing corrections to the coefficients of
thet2 andt3 terms of the precession quantities.

There is however a problem of numerical consistency.
The t2 and t3 corrections that appear, arising from the
MHB correction to the speed of the celestial pole, are indeed
largely less than the corrections which would correspond to
a better representation of the motion of the ecliptic. It would
therefore be artificial to introduce corrections at the microarc-
second level when it is well known that corrections more than
ten (or a hundred) times larger would be necessary. Moreover,
the expressions of L77 are limited to terms of degree 3 or less,
whereas there are non-negligible terms at degree 4, and the
computations are therefore not consistent in principle. A de-
velopment up to degree 4 is necessary.
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Table 1.Precessional quantities determined with different sources. Units: coefficients in arcsecond and time in century.

Source t t2 t3 t4

L77 PA 4.1976 0.19447 –0.000179
(Newcomb) QA –46.8150 0.05059 0.000334
from S94 PA 4.199706 0.1939713 –0.00022351 –0.000001036
(VSOP87) QA –46.809269 0.0510429 0.00052233 –0.000000567
W94 PA 4.199610 0.193971 –0.000223 –0.000001
(VSOP87+IERS1992 masses) QA –46.809560 0.051043 0.000522 –0.000001
P03 PA 4.199094 0.1939873 –0.00022466 –0.000000912
(VSOP87+Fit to DE406) QA –46.811015 0.0510283 0.00052413 –0.000000646

5.3. Method for improving the model
for the precession of the ecliptic

Since the adoption of the IAU 1976 precession, polynomial up-
dates have been provided using improved ecliptic motion by
Bretagnon & Chapront (1981), Laskar (1986) and S94. The
latter paper provided expressions derived from improved pre-
cesssion rate, obliquity and also masses, and partial deriva-
tives with respect to these quantities. These developments were
used by W94, together with the newly introduced precession
rate in obliquity and updated VLBI precession rate in longi-
tude, to provide the most complete polynomials in time for
the precession quantities. These latest expressions for the pre-
cession quantities are based on the analytical theory VSOP87
(Bretagnon & Francou 1988) for the motion of the ecliptic,
which was fitted to the numerical ephemerides DE200/LE200,
and on the IERS Standards 1992 system of planetary masses
(McCarthy 1992). Improved expressions for the precession of
the ecliptic can be provided by an appropriate fit of the semi-
analytical solution of the motion of the ecliptic in the ICRS to
the most accurate available numerical integration.

6. Improving the models for precession

6.1. Precession of the ecliptic

6.1.1. The precession quantities for the ecliptic

Hereafter we designate byP and Q the quantitiesP =

sinπ sinΠ and Q = sinπ cosΠ, whereπ andΠ are the os-
culating elements of the Earth-Moon barycenter orbit (π, the
inclination on the ecliptic andΠ, the longitude of the ascend-
ing node). The anglesπ andΠ are referred to a fixed ecliptic
for J2000.0. The planetary theory VSOP87 introduces slightly
different quantities,p = (sinπ/2) sinΠ andq = (sinπ/2) cosΠ.
The corresponding precession quantities are denoted byPA =

sinπA sinΠA andQA = sinπA cosΠA. They are time polyno-
mials, easily derived from the secular developments ofp andq
in the Earth-Moon barycenter orbital motion. Such develop-
ments have been provided by S94 and W94.

The quantitiesp andq in VSOP87 are quasi-periodic func-
tions of the time. They are expressed in the form of Poisson
series whose arguments are linear combinations of the mean
planetary longitudes; more precisely they involve a secular
part, a periodic part (Fourier terms) and a mixed part (Poisson
terms, i.e. Fourier terms with varying amplitudes). The

secular parts providePA and QA, which may be regarded
as, respectively, thex and −y components of the secularly-
moving ecliptic pole vector in a (right-handed) frame that has
its x-axis through the J2000 (inertial) mean equinox and itsz-
axis through the J2000 ecliptic pole.

From the original expressions for the polynomial parts forp
andq given in S94, which were computed using the IAU 1976
system of planetary masses, we have derived the polynomial
developments forPA andQA. These expressions are very close
to the developments used by W94 since the source is the
same (VSOP87), the only change coming from the introduc-
tion of the IERS Standards 1992 masses (McCarthy 1992).
The coefficients of these developments and of L77 are listed
in Table 1 together with the improved values obtained from the
procedures set out below1.

When looking at the trends in the residuals between VSOP
and various JPL source ephemerides (DE200, DE403 and
DE405), the secular quantities

(
dp
dt

)
t=0

and
(

dq
dt

)
t=0

show sys-
tematic deviations that are probably due to the analytical solu-
tion VSOP87, independently of the reference frame, the con-
stants of integrations and other physical parameters of the
JPL reference ephemeris. The corresponding deviations inPA

andQA are, in the case of DE406:
(

dPA
dt

)
t=0
' −0.6 mas/cy and(

dQA

dt

)
t=0
' −1.7 mas/cy. The contributions due to the change

of masses mentioned above are−0.1 mas/cy and−0.3 mas/cy
respectively and are much smaller. An illustration of the peri-
odic and secular deviations ofP andQ between VSOP87 and
DE406 is shown in Figs. 2 and 3, the time interval covering two
millennia. The thickness of the curves brings out the residuals
due to short-period terms whose amplitudes are smaller than
1 mas. The “noise” produced by the short-period terms is the
main limitation to the improvement of the secular variations
described below.

6.1.2. Improving the developments

Our “improved” ecliptic model comes from two independent
descriptions of the path of the (inertial) ecliptic pole, one from
VSOP87 and the other from DE406. VSOP87 provides the
most detailed analytical model currently available of the peri-
odic component of the ecliptic motion. DE406 contributes the
best available accuracy, consistency with modern observations,
and a long time span.

1 Denoted P03 in the following.
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Fig. 1. Rotation anglesφ and ε to rotate from equatorial to ecliptic
frame.

VSOP87 provides an ecliptic in the form of the oscu-
lating elementsp, q, which are obtained from models that
comprise a secular part (that we wish to improve upon) and
a periodic part. The DE406 ecliptic is obtained from the
Earth Moon Barycenter (EMB) position and velocity (r, ṙ):
the (inertial) ecliptic pole lies in the direction ofr × ṙ and its
motion contains both secular and periodic effects. Combining
these two ecliptics to obtain an improved secular model con-
sists of finding the best rotation from the DE406 (=DE405)
frame to ecliptic coordinates, then comparing the DE406 and
VSOP87 p, q predictions, and finally minimizing the differ-
ences by making small adjustments to the VSOP87 secular
models.

The procedure has one unavoidable weakness in that the
final polynomial models for the secular part ofp, q (and
hencePA, QA) are essentially empirical and have no regard for
dynamical consistency. Although the VSOP87 model is theory-
based, the DE406 predictions are, as far as this exercise is con-
cerned, a source of observations, and the resulting polynomi-
als empirically model those observations. However, they can
be expected to be valid over the entire time span used (in our
case 1000–3000AD), with any unmodeled long-period terms
in VSOP87 automatically corrected.

The details of the procedure we used to provide an im-
proved ecliptic model were as follows:

1. Adopt starting values forφ0, ε0 and ψ0, the three Euler
angles that relate the orientations of DE405/DE406 and
VSOP87. We used 84381′′.4 for ε0 and zero for the other
two angles.

2. Initialize to zero the current corrections to the VSOP87
polynomials. To match VSOP87, the two correction poly-
nomials each consist of five coefficients, for powers oft
from 1 to 5. (NB: The VSOP87 polynomials requiret in
millennia, whereas in this paper we uset in centuries.)

3. (The procedure iterates from this point.) Using the current
values forφ0 andε0, calculate the third Euler angleψ0 (see
Fig. 1):

ψ0 = (φ0 − φ(DE405)+ φ(ICRS)+ dα0)/ cosε0
+ ξ0/ sinε0 − ψ(DE405),

(22)

whereξ0 is 16.617 mas, the ICRS declination of the J2000
mean equinox,ψ(DE405) is 6.4 mas, the distance from the
ICRS equinox to DE405 equinox,φ(DE405) is 50.28 mas,
the distance from the DE405 origin to the DE405 equinox,
φ(ICRS) is 55.42 mas, the distance from the ICRS ori-
gin to the ICRS equinox, anddα0 is 14.6 mas, minus the
ICRS right ascension of the mean J2000 equinox.ξ0 is from
the IAU 2000 frame bias (11) as presented in the IERS
Conventions 2000,ψ(DE405),φ(DE405),φ(ICRS) anddα0

are from Chapront et al. (2002), thedα0 value being the
adopted value (12). It should be noted that these numbers
are not entirely consistent, because they come from obser-
vations. However, expression (22) defines how they have
been combined to produce a workingψ0 value.

4. For a set of regularly-spaced timest (in Julian centuries of
TDB) centered on J2000, interrogate DE406 to obtain the
EMB heliocentric position and velocity and VSOP87 to ob-
tain p andq. Our samples were spaced 0.7 years from J1000
to J3000, giving at range of±10.

5. Transform the DE406 heliocentric position and velocity
from the DE405 (i.e. equatorial) frame to the J2000 ecliptic
frame by applying the rotationR3(ψ0)R1(ε0)R3(−φ0) and,
using the standard transformations, obtain the osculating
elementsπ andΠ.

6. Computep = (sinπ/2) sinΠ andq = (sinπ/2) cosΠ and
subtract the VSOP87 values from Step 4 to give∆p and∆q.
The result of the last three steps is a table oft, ∆p and∆q.

7. Using standard minimization techniques, fit polynomial co-
efficients in t0−n to the sets oft,∆p and t,∆q. As men-
tioned in Step 2, we chosen = 5 to match the order of
the VSOP87p andq secular models.

8. Thet0 terms of the resulting polynomials,p0 andq0, have
a special status in that they describe the offsets at J2000
between the DE406 ecliptic and the one used to rotate the
DE406 vectors into the ecliptic frame. They can thus be
used to improve theε0 andφ0 estimates, by adding 2q0 to ε0
and subtracting 2p0/ sinε0 from φ0.

9. The remaining polynomial terms,p1−5 andq1−5, are sub-
tracted from the current corrections to the VSOP87 poly-
nomials (see Step 2).

10. Repeat from Step 3 until the∆p and∆q polynomial coeffi-
cients have minimized. Convergence is rapid: no more than
three iterations should be required.

11. The final corrections are then subtracted from the VSOP87
polynomials, giving improvedp, q models. These can be
transformed into models forPA ,QA to give the final result.

The final DE405-to-ecliptic rotation angles were:

φ0 = 0′′.05132

ε0 = 84381′′.40889

ψ0 = 0′′.03862. (23)

The improvedPA and QA series are as given as the last line
(P03) of Table 1.

The number of quoted decimal places was chosen after
observing the small variations seen when the time step was
changed. Smaller steps than the adopted 0.7 years produced
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Fig. 2. DifferencesP(DE406)− P(VSOP) inP = sinπ sinΠ.
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Fig. 3. DifferencesQ(DE406)− Q(VSOP) inQ = sinπ cosΠ.

data sets so large that the accumulated rounding errors in
the least-squares fitting procedure used began to influence the
answers. Steps larger than 0.7 years degraded the accuracy
through under-sampling. The acceptable margin was roughly
a factor of two either side of the adopted time step. In the case
of PA andQA, the terms int5 were of marginal significance and
have been omitted from Table 1.

Although the procedure set out above naturally produces
an ecliptic according to theinertial definition it can readily be
adapted to use therotating definition instead (Standish 1981).
The adaptation consists of expanding Step 5 to work in the ro-
tating frame of the ecliptic of date rather than the fixed J2000
ecliptic frame. Because the required frame rotation and spin
matrices are functions of thePA ,QA series, these have to be de-
termined from the currently estimatedp, q series at each itera-
tion, as well as at the end. We introduced the further refinement
of editing the VSOP87 series forp, q to suppress annual terms,
though this had only a small effect on the result. These adapta-
tions produced an equinox displaced by−93.782 mas from the
inertial equinox, toφ0r = −0′′.04246, and changed the obliquity
by 3.329 mas from the inertial value, toε0r = 84381′′.41222.

6.1.3. Accuracy estimates

It is useful to estimate the precision which can be assumed
for the coefficients in the above determination. We have per-
formed several tests to assess the influence of the fitting in-
tervals on the determination of

(
dPA
dt

)
t=0

and
(

dQA

dt

)
t=0

. Over

Table 2.The long-period terms in VSOP87:Atα cos(ωt+φ). The plan-
etary and lunar arguments areT = Earth,Ma = Mars, J = Jupiter,
S = Saturn,D = Delaunay’s argument D (the difference of the mean
longitudes of Moon and Sun),LMoon = mean longitude of the Moon.

Argument α A (′′) φ (degree) P = 2π/ω (year)

Variable:q

2J − 5S 0 0.00672 125.2 883

4T − 8Ma+ 3J 0 0.00012 350.4 1783

2J − 5S 1 0.00050 174.6 883

T + D − LMoon 1 0.00017 180.0 25 770

Variable:p

2J − 5S 0 0.00757 30.4 883

2J − 5S 1 0.00030 114.6 883

T + D − LMoon 1 0.00017 270.0 25 770

the time interval∆t = [1900, 2100], we computed the lin-
ear regressions of the residuals:P(DE406)− P(VSOP87) and
Q(DE406)− Q(VSOP87). The tests consisted of varying the
set of abscissas, the length of the time interval∆t modified by
10 percent and a shift of the center by±10 years. Our conclu-
sion from these tests is that our determination of the secular
variations ofPA and QA is better than 0.05 mas/cy close to
J2000.0 although it is given with more digits in Table 1 for the
purpose of internal computations.

The secular parts of the variablesp andq are very sensi-
tive to the long-period terms which have been retained in the
analytical solution and to their accuracy. Table 2 shows
the three terms of longest period which exist in VSOP87 in the
variablesp andq. Here, the general formulation for a Poisson
term is Atα cos(ωt + φ), whereA is the amplitude,α the as-
sociated power of time,φ is the phase andω the frequency,
the time being reckoned from J2000.0. The periodP = 2π/ω
is given in years. If we choose to develop with respect to
the time the long-period term corresponding to the argument
4T − 8Ma + 3J and the very-long-period Poisson term corre-
sponding toT − D − LMoon, the constant term inq and its trend(

dq
dt

)
t=0

will be slightly modified in the original solution (p is
unchanged). The fit with DE406 compensates this discrepancy
if it is performed on a sufficiently long time interval. On the
other hand, a development of the term corresponding to 2J−5S
will be not appropriate after few centuries.

In Sect. 4.2, we discussed the rotation between GCRS
and the mean J2000 equator and equinox in the IAU 2000
model. The pole offset (δψ0, δε0) was defined by the MHB 2000
precession-nutation model itself, but it was necessary to posi-
tion the equinox by choosing a value fordα0, thereby complet-
ing the 3D frame rotation.

The adopted valuedα0 = −14.6 mas of the ICRS RA of
the mean dynamical equinox at J2000 was that estimated by
Chapront et al. (2002) from LLR data and VLBI EOP and
therefore benefited from both LLR and VLBI data for placing
the ecliptic in the ICRS. With an improved precession model in
prospect, the question naturally arises or whether to retain this
IAU 2000 frame bias or to consider introducing an improved
frame bias.
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As our goal is to remain compliant with the IAU 2000 res-
olutions as far as possible, it seems clear that the location of
the J2000 mean pole must remain as defined by MHB 2000.
However, if we look critically atdα0 we find that choices do
in fact emerge, because of small inconsistencies between the
LLR results and MHB 2000. In particular, in the Chapront
et al. (2002) LLR determination, the mean equator at J2000
is based on the IERS 1996 precession-nutation model rather
than MHB 2000 (which was not yet available at the time). This
means that the LLR and MHB estimates for the frame bias of
the J2000 mean equator with respect to the ICRS equator are
slightly different, about 17.7 mas and 16.6 mas respectively. In
view of this, it can be argued that an a posteriori adjustment
to the published LLRdα0 would be justified. This would give
a dα0 figure of−17.1 mas, a difference of−2.5 mas with re-
spect to the value adopted for the IAU 2000 model. It should
however be noted that:

1. The difference in the CIP motion resulting from adα0

change of 2.5 mas would be only one term of 24µas/cy in Y,
which is not of practical significance.

2. Thedα0 value cannot be evaluated to better than about
±3 mas, given the uncertainties in the ICRS position both of
the MHB J2000 mean equator and of the ecliptic.

Our conclusion is that although a reviseddα0 could be in-
troduced as a complement to an improved precession model,
the inconvenience and opportunities for error that multiple
frame bias models would lead to would not be repaid by worth-
while improvements in accuracy. We therefore recommend re-
taining the adopted value of−14.6 mas as a conventional value.

6.2. Precession of the equator

6.2.1. Equations for the precession quantities

The precession of the equator with respect to a fixed frame can
be derived by solving the differential equations for the preces-
sion quantitiesψA, andωA, given the expressions for the vari-
ous contributions to the precession rates (that are dependent on
the orientation of the ecliptic with respect to the equator) and
the precession of the ecliptic. This would theoretically require
using expressions for these contributions referred to a fixed
equator and ecliptic as was done by Woolard (1953) to provide
the precession-nutation solution directly referred to the mean
ecliptic frame of the epoch 1900. However, the most complete
recent expressions for these contributions (for example in W94)
are for the componentsrψ andrε of the precession rates in lon-
gitude and obliquity respectively, expressed in an equatorial
frame linked to the moving equinox. These components have
therefore to be rotated using the quantityχA for the planetary
precession. The equations to be used are the first equations of
formula (14) of L77 or (29) of W942, the last one including the
additional componentrε , which was not present in the develop-
ments of L77.

The differential equations to be solved for providing the
two basic quantities for the precession of the equator are then

2 Note that the componentrψ used in this paper is related to theRψ

component in W94 byRψ = rψ sinεA.

written as:

sinωAdψA/dt = (rψ sinεA) cosχA − rε sinχA ,

dωA/dt = rε cosχA + (rψ sinεA) sinχA . (24)

These equations, which are relative to the angular momentum
axis, ignore the second order terms appearing in the differential
equations for body axes which give rise to additional terms, the
so-called Oppolzer terms (see Woolard 1953). As the preces-
sion rates estimated from observations are relative to the CIP,
these complementary terms in precession rates have first to be
subtracted from the values estimated from observations before
these values are used as the constants of integration (rψ)t=0 and
(rε)t=0 for solving Eqs. (24), and then have to be added to the
solutions to provide the precession relative to the CIP.

The complementary precession terms for the CIP axis can
be derived from classical expressions of Oppolzer terms (see
for example Capitaine et al. 1985 or Hartmann et al. 1999) in
the following form:

δωA = (A/(CΩ))(dψA/dt) sinε0
δψA = −[A/CΩ sinε0](dωA/dt). (25)

A andC being the Earth’s principal moments of inertia andΩ
the mean Earth’s angular velocity, (2π × 36 525)/cy.

Using solutions (37) for ψA and ωA, and the
0.996726205 MHB value for the ratioA/C in expres-
sion (25), shows that the only corresponding Oppolzer terms
with amplitudes larger than 1µas for a century are (i) a
bias in obliquity of 8704µas, that is in fact included in the
adopted value for the mean obliquity at epoch, and (ii) secular
terms of−4 µas/cy and+1 µas/cy in obliquity and longitude,
respectively. It can be shown that the solution of Eqs. (24)
is insensitive, within 1µas precision, to contributions to the
integration constants smaller than 1 mas, and consequently the
secular components of Oppolzer terms can be ignored.

The differential Eqs. (24) require expressions for the pre-
cession quantitiesεA andχA, which depend both on the motion
of the equator and the motion of the ecliptic, as does the quan-
tity pA, which is also required for computingχA.

The differential equations forpA and εA can be derived
from the expression forrψ and rε respectively and the eclip-
tic precession (see Laskar 1986; Simon et al. 1997; or W94 for
the equation inεA), which gives:

dpA/dt = rψ − cotεA[A(p, q) sinpA

+B(p, q) cospA] − 2C(p, q)

dεA/dt = rε − B(p, q) sinpA + A(p, q) cospA , (26)

p and q being the polynomial parts of the ecliptic variables
defined in Sect. 6.1.1 andA(p, q), B(p, q) andC(p, q), functions
of these quantities such that:

A(p, q) = r
[
q̇+ p(qṗ− pq̇)

]
,

B(p, q) = r
[
ṗ− q(qṗ− pq̇),

]
C(p, q) = qṗ− pq̇ (27)

with r = 2/
√

1− p2 − q2.
The quantityχA can be derived from geometrical consid-

erations in the spherical triangle Nγ1γ, where N is the node of
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the moving ecliptic in the ecliptic at J2000 andγ1 andγ are
the mean equinoxes of date and of J2000 respectively. Using
the definition of the quantitiesPA andQA as functions of ele-
mentsΠA andπA of the spherical triangle, this gives:

sinχA sinωA = PA cospA + QA sinpA . (28)

A simultaneous solution of the four differential Eqs. (24)
and (26) together with the geometrical relation (28) is nec-
essary and an iterative procedure is required for providing a
solution for the precession of the equator that is dynamically
consistent. The solution includes the expressions for the ba-
sic quantitiesψA, ωA and for the secondary quantitiesεA, χA

andpA, once the precession of the ecliptic is given.

6.2.2. Theoretical contributions to the precession rates

The forms of the solution of the differential Eqs. (24) and (26)
for the precession of the equator depend on the expressions for
the precession ratesrψ andrε , that can be developed as polyno-
mials int:

rψ = r0 + r1t + r2t2 + r3t3,

rε = u0 + u1t + u2t2 + u3t
3. (29)

The constants of integration for solving Eqs. (24) and (26) are
the constant termsr0 andu0 in (29).

The theoretical contributions to the precession rate in lon-
gitude have been described in detail for a rigid Earth for ex-
ample by Kinoshita (1977), Laskar (1986), W94, Souchay &
Kinoshita (1996) and Roosbeek & Dehant (1998).

A complete evaluation of the theoretical contributions to
the precession rates for a non-rigid Earth has been provided in
W94 including, for the first time, the obliquity rate with respect
to space and the tilt effects. This provided constant and time-
dependent components in longitude and obliquity, correspond-
ing to (i) first order, second order andJ4 effects in the direct
luni-solar torque, (ii) direct planetary torque effect, (iii) J2 and
planetary tilt effects, (iv) tides anḋJ2 effects and (v) geodesic
precession.

The contributions (i) to (iv) result from the physical effect
of the luni-solar and planetary torques on the oblate Earth, for
which the dynamical ellipticity of the Earth,Hd = [C − (A +
B)/2]/C (A, B andC being the Earth’s principal moments of
inertia), is an essential parameter.

In contrast, the geodesic precession (v) originates from the
relativistic rotation of the “dynamically non-rotating” geocen-
tric frame, in which the precession equations are solved for the
dynamical effects (i) to (iv), with respect to the “kinematically
non-rotating” GCRS in which precession-nutation is actually
observed. ConsequentlyHd is a scaling factor for all the ef-
fects, except for the geodesic precession. The initial numerical
values for the components (except for the geodesic precession)
are also dependent on the value for the mean obliquity of the
ecliptic at J2000.

The computations performed in the present work for solv-
ing the precession equations make use of:

1. MHB values (10) or equivalently (13) for the precession
for computing the constants of integrationr0 andu0 (see
Sect. 6.2.4 for the details of this computation);

2. the LLR estimated value,ε0 = 84381′′.406 (see Fig. 1 and
Sect. 6.1.1) for the mean obliquity at J2000, that is also the
IERS 2000 value;

3. W94 values described above for the various contribu-
tions (i) to (iv) to precession rates (Table 4 of W94 and
Williams 1995), rescaled by the MHB values for the dy-
namical ellipticity, Hd of the Earth and for the mean obliq-
uity of the eclipticε0, adopted here;

4. theε-dependence of each component as provided in Table 4
of W94;

5. MHB “non-rigidity contribution” to the precession rate in
longitude due to non-linear terms in the torque equations,
which is, in microarcseconds (Mathews 2002):

dnrψ = −21050t; (30)

6. a complete expression for the geodesic precession from
Brumberg (1991), Bretagnon et al. (1997) and Brumberg
(2003), such as, in microarcseconds:

ψg = 1919882.7 t− 503.9 t2 − 0.7 t3

ωg = 1.0 t + 19.5 t2 − 4.7 t3. (31)

Table 3 provides the theoretical values used in our work for
the different precession rate contributions, the origin of which
is indicated in the first column. The form of the dependence
of each effect on the obliquity of the ecliptic,ε, that has to be
considered when integrating the equations, is provided in the
second column.

The effect of geodesic precession provided in this table has
been obtained by converting expression (31) for the effect in
the quantitiesψA andωA into contributionsrψg (usually de-
notedPg) andrεg to the precession ratesrψ andrε respectively,
these quantities being related through expression (24).

The main contributions to the precession rates that origi-
nate from the first order terms of the luni-solar torque are de-
noted (r0)1 and (u0)1 respectively. The (r0)1 term is the only one
with a sufficiently large amplitude (of the order of 5000′′/cy)
to be sensitive to small changes in the value for the dynami-
cal ellipticity Hd of the Earth, which is one of the Basic Earth
Parameters to be determined. The (r0)1 term is therefore of very
special significance for computing the integration constantr0

to be used for solving the precession equations. Its value is de-
rived from the adopted value forr0, given the other contribu-
tions which are provided by the theory.

It should be noted that the quantity (r0)1 is related to the
so-called “Newcomb’s precessional constant” at epoch,P0, by
(r0)1 = P0 cosε0, whereas the quantityr0 corresponds to the
value at epoch of the so-called “speed of luni-solar precession”
in previous IAU models in which the planetary contribution to
the precession of the equator was ignored. More generally, the
largest contributions torψ provided in Table 3 correspond to
effects considered in the expression given by Kinoshita (1977)
for the speed of luni-solar precession,f2000, whereas the other
contributions correspond to the additional effects mentioned
above.
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Table 3. Theoretical contributions (from W94, Williams (1995) and MHB) to the precession rates,rψ and rε , of the equator used in the
present paper.

Source of the effect ε dependence Contribution in longitude at J2000 Contribution in obliquity at J2000
µas/cy µas/cy2 µas/cy3 µas/cy µas/cy2 µas/cy3

Luni-solar & Planetary torque
Luni-solar 1st order cosε (r0)1 −3395 −6 0 0 0
Luni-solar 2d order(a) 6 cos2 ε − 1 −33 100 0 0 0 0 0
Luni-solar 2d order(b) 3 cos2 ε − 1 −13 680 0 0 0 0 0
Luni-solarJ4 cosε

(
4− 7 sin2 ε

)
+2600 0 0 0 0 0

Planetary 1st order cosε +31 367 0 0 −1400 0 0
J2 and planetary tilts

J2 and planetary tilt(a) cos 2ε/ sinε −269 430 +1074 0 0 0 0
planetary tilt(b) cosε 0 0 0 (u0)1 −44 +3

Tides
tides(a) cos2 ε 0 −102 0 0 0 0
tides(b) cos3 ε 0 −133 0 0 0 0
tides(c) sinε cosε 0 0 0 +2400 0 0

J2 rate cosε 0 −14 000 0 0 0 0
Non-linear effect 1 −21 050 0 0 0 0 0
Geodesic precession 1 −1 919 883 +3 +1 −1 0 +5

Total (r0)1 − 2 223 176 −16 553 −5 (u0)1 + 999 −44 +8

6.2.3. Spurious contributions to the estimated rates

The MHB precession rate corrections were estimated in a fit of
Basic Earth Parameters (BEP), that are part of the precession-
nutation theory, to VLBI series of celestial pole offsets. The
estimated precession rates are therefore dependent (i) on the
parameters that were used as observations, (ii) on the proce-
dure that was used for estimating these observed parameters
and (iii) on the MHB fit. The contributions of these different
effects have been evaluated in order to be subtracted from
the MHB estimates before using these values as constants of
integration.

(i) Effect of the “observed” parameters

The nutation parameters determined from the analysis of
the VLBI data are corrections to the precession-nutation model
expressed as celestial pole offsets in the form dψ and dε. It
should be noted that these celestial pole offsets were deter-
mined using the conventional L77 value for the obliquity of
the ecliptic at J2000 to which VLBI observations are actually
not sensitive. This means that, whereas the VLBI estimate
for the precession rate is provided for the correction dψ1 to
the t term ψ1 of the precession in longitude, the estimate in
fact includes the effect of the conventional scaling factor sinε0
through the precession nutation matrix product that was used
in the VLBI computation. This is equivalent to saying that the
parameter to which VLBI observations are actually sensitive is
not dψA itself, but is dψA sinεA (i.e. the GCRSX-coordinate of
the CIP). Consequently, a change in the conventional value for
the obliquity of the ecliptic at J2000 would result in a spurious
change in the corresponding estimate forψ1. The spurious
effect in the precession rate resulting from a change dε0

from the L77 value (84381′′.448) to the IERS 2000 value
(84381′′.406) forε0, is:

d1ψ1 = ψ1 dε0 cotε0 = − 2366µas/cy. (32)

(ii) Effect of the pre-2003 VLBI procedures

As mentioned in the introduction, the pre-2003 VLBI
procedures did not use the rigorous transformation as de-
scribed in Sect. 2, but used a procedure which a) considered
the precession and frame biases corrections as if they were
nutations and b) omitted the equinox offset.

This, in particular, introduces the following spurious con-
tributions to the estimated precession rates:

d2ψ1 = η0ψ1 cotε0 = −384µas/cy

d2ω1 = −ξ0ψ1 cosε0 − dα0ψ1 sinε0 = +514µas/cy. (33)

(iii) Effect of the MHB fit

The MHB procedure to estimate the precession rates
[(rψ)t=0]MHB in longitude and [(rε)t=0]MHB in obliquity in-
cluded three steps (Mathews 2002). The first step was to
estimate VLBI corrections to the luni-solar precession rate
in longitude, P, to a number of prograde and retrograde
nutation amplitudes and to the precession rate in obliquity.
The second step was to fit the theoretical expressions forP
and the nutation amplitudes to their observational estimates in
order to get the dynamical ellipticityHd as one of the BEPs.
The last step was to use the estimated value forHd to derive
the MHB precession rate in longitude as being the sum of the
value, Pr(Hd), corresponding to a rigid Earth and the other
contributions to the precession rate (see Sect. 6.2.2), including
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Table 4. Initial values at J2000.0 used for computing the precession of the equator.

Source ε0 Hd (r0)1/ cosε0 (u0)1/ cosε0 ψ1 ω1

84 381′′ ×103 in ′′/cy in ′′/cy in ′′/cy in ′′/cy

L77 .448 3.2739935 5494.3861 0.0 5038.7784 0.00

W94 .409 3.2737634 5494.01083 −0.0291 5038.456501 −0.0244

MHB .410 3.27379492 5038.478750−0.02524

P03prel .406 3.27379269 5494.059982 −0.030126 5038.478750 −0.02524

P03 .406 3.27379448 5494.062986 −0.030686 5038.481507 −0.02575

that from non-rigidity. The value used for (dPR/dHdR) was
1 539 706 mas/yr from SMART97 (Bretagnon et al. 1998),
based itself on the W94 precession rate correction andε0 value,
84381′′.410.

This shows that MHB estimate for the precession rate in
longitude is dependent on the value that is used for the factor
(dPR/dHdR) and on the theoretical values for the other contri-
butions tor0 as well.

The change in (r0)1 that results from the differences be-
tween the values used in this paper (see Tables 3 and 4) for
providing our solutions (P03prel and P03) and the MHB ones is:

d(r0)1 = 3914µas/cy. (34)

6.2.4. Evaluation of the constants of integration

The constants of integration to be used for solving the preces-
sion equations must take proper account of all the perturbing
effects that have been evaluated in Sect. 6.2.3.

First, the contribution (32) corresponding to the effect (i)
has to be subtracted from the MHB estimate forψ1 before it is
considered to be the physical precession rate along the ecliptic
of epoch.

Second, the contribution (33) corresponding to the ef-
fect (ii) has to be subtracted from the observed values forψ1

andω1 before using them as the observed quantities forr0

andu0 respectively.
In contrast, the contribution (34) corresponding to the ef-

fect (iii) does not modify the value forr0 itself, but it modifies
the value for (r0)1 (and consequently forHd) that can be de-
rived from the MHB observed value forr0 (see Table 4). This
effect does not modify the secular term for the solution inψA,
and only very slightly that for its quadratic term.

The integration constants for the precession Eqs. (24)
and (26) are computed from the MHB estimates forr0 andu0

taking into account the contributions that are listed on Table 3.
The r0 andu0 values to be used must be derived from MHB
estimates, using the following relations (inµas/cy):

r0 = (r0)MHB + 2757

u0 = (u0)MHB − 514. (35)

The contributions (32) and (33) to the MHB estimates and
that from nutation (see Sect. 4.4) have not been considered
in other existing solutions for precession. For comparison pur-
poses with these solutions, we will therefore keep the prelim-
inary solution not corrected for these spurious contributions,

denoting it P03prel. The solution corresponding to relation (35),
that is considered as being the final solution, is denoted P03.

Table 4 provides a comparison between numerical values
for the fundamental parameters corresponding to different so-
lutions and Table 5 provides the corresponding contributions
to precession rates that have been taken into account. The first
column in this Table provide the first order terms in preces-
sion rates in longitude and obliquity respectively, that can be
derived from the observed values, given the other theoretical
contributions.

6.2.5. Solution for precession quantities compliant
with IAU 2000A

Following the approach described in Sect. 6.2.1, we used an-
alytical and semi-analytical tools for computing corrected ex-
pressions for the precession quantities, given the motion of the
ecliptic as obtained in Sect. 6.1.1 and the expressions for the
quantitiesrψ andrε provided by Tables 3, 4 and 5. The differ-
ential equations forψA, ωA andεA and pA were solved using
the GREGOIREsoftware, starting from the IAU 1976 expres-
sions, which provide numerical expressions for these quanti-
ties including corrections to thet2 and t3 terms with respect
to the previous ones. Then, using relations in the spherical tri-
angle mentioned earlier, the corresponding numerical expres-
sion forχA was derived. Two iterations of this process achieved
convergence at a sub-microarcsecond level, providing the final
solutions.

The program was tested against IAU 1976 expressions and
against W94 solutions. With the input of the ecliptic expres-
sions and the numerical values for the precession rate con-
tributions, the process was able to reproduce the polynomi-
als in the L77 and W94 papers up to the last digits of these
expressions.

Table 6 compares the developments, obtained from differ-
ent solutions, for the two basic quantities for the precession
of the equator. (Here, and elsewhere in the paper, each coeffi-
cient is quoted to a number of digits that delivers 1µas reso-
lution for dates close to 2000, degrading to 10µas resolution
for values oft up to±10, corresponding to±1 millennium. It
should be understood that this is a numerical convention and
does not necessarily imply that any given coefficient is known
to the quoted accuracy.)

It should be noted that the improvement from the IAU 2000
to the P03 solutions is of the order of 5 mas/cy2 in ψA and of
25 µas/cy2 in ωA. It should also be noted that, except for the
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Table 5.Contributions in arcseconds to the precession rates used in different models.

Source Contribution in longitude Contribution in obliquity
1st order 2nd ord, J4, tilt Geod. prec. Tides & J2 rate Non-rig Rigid Earth Tides

L77 5040.698400 −0.0468 − 1.92 0.0 0.0 0.0 0.0
W94 5040.689463 −0.31361 − 1.91936 −0.0142t 0.0 −0.0268 +0.0024
MHB 5040.704510 −0.28491 − 1.9198 0.0 −0.02105 −0.02524 0.0
P03prel 5040.733293 −0.31361 − 1.919883 −0.0142t −0.02105 −0.027640 +0.0024
P03 5040.736050 −0.31361 − 1.919883 −0.0142t −0.02105 −0.028154 +0.0024

Table 6.Comparisons between solutions for the precession of the equator and expressions for the precession rates.

Source t0 t t2 t3 t4

L77 ψA 5038.7784 −1.07259 −0.001147

(IAU1976) ωA 84 381.448 0.0 0.05127 −0.007726

W94 ψA 5038.456501 −1.078977 −0.001141 0.000133

ωA 84 381.409 −0.0244 0.051268 −0.007727 0.000000

IAU2000 ψA 5038.478750 −1.07259 −0.001147

ωA 84381.448 −0.02524 0.05127 −0.007726

P03prel ψA 5038.478750 −1.0790091 −0.00114044 0.000132851

ωA 84 381.406 −0.02524 0.0512623 −0.00772502 −0.000000467

P03 ψA 5038.481507 −1.0790069 −0.00114045 0.000132851

ωA 84 381.406 −0.025754 0.0512623 −0.00772503 −0.000000467

P03prel rψ 5038.478750 0.4794049 −0.00013387 −0.000021008

rε −0.025240 −0.0000867 0.0000171 0.0000000005

P03 rψ 5038.481507 0.4794106 −0.00013388 − 0.000021008

rε −0.025754 −0.0000477 0.00000826 0.0000000006

secular term due to the correction applied in removing spu-
rious effects, the differences between the coefficients of the
expressions of our P03prel and P03 solutions, are at a microarc-
second level (P03 being our final solution).

6.2.6. Analytical expressions for the coefficients

Analytical expressions for the precession quantities are nec-
essary for understanding each contribution of the precession
of the equator and the precession of the ecliptic, and the cou-
pling effects between them. Hilton (2002) proposed an exten-
sion of the L77 analytical expressions to IAU 2000 as func-
tions of the L77 coefficientsψ1, ψ′1, ψ′′1 , ω1, ω′1, ω′′1 , etc. As
the computations performed in this paper include various pre-
cession rate contributions that have different effects in the so-
lutions according to their epsilon-dependence, we have instead
chosen the precession rates in longitude and obliquity as pro-
vided by (29) to be the basic quantities for the precession of the
equator. The basic expressions for the precession of the eclip-
tic are the polynomial developments of the coordinates of the
ecliptic pole, which are expressed as:

PA = s1t + s2t2 + s3t3 + s4t4 + s5t5

QA = c1t + c2t2 + c3t3 + c4t4 + c5t5. (36)

We used the Maple software to derive analytically the expres-
sions for the coefficients of the solutions of Eqs. (24) and (26).
These expressions include the additionalω1 term (=u0), which

was absent in L77. Table 7 provides the resulting expres-
sions, up to the third degree, for the coefficients of the pre-
cession quantities as functions of the coefficients of the expres-
sions (29) and (36).

7. An improved precession model

The only independent quantities for precession are the two di-
rection cosines of the pole of the equator and those of the pole
of the ecliptic. In this paper, we have clearly separated preces-
sion of the equator and precession of the ecliptic and we have
obtained the developments of the quantities as functions of time
through two independent approaches.

7.1. Final expressions for the primary angles

The quantitiesψA, ωA, for the celestial pole andPA, QA for
the ecliptic will be considered as being the primary precession
quantities from which the others can be derived. Their develop-
ments are given below. The coefficients are in arcseconds and
the time unit is 1 century of TDB (or TT in practice)3.

3 The largest term in the difference TDB−TT being 1.7 ms× sinl′,
where l′ is the mean anomaly of the Sun, the resulting error in the
precession quantities using TT is periodic with an annual period and
an amplitude less than 10 nanoarcseconds, which significantly exceeds
the required accuracy.
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Table 7.Expressions for the coefficients of the precession quantities.

Quantity Coefficient of t Coefficient oft2 Coefficient of t3

ψA r0
1
2

(
r1 + r0c1 cotε0 − u0s1

sin2 ε0

)
1
3

[
r2 + cotε0

(
r0c2 − r2

0s1 + r1c1

)]
−1

6
r0

(
c2

1 +
s2

1

sin2 ε0

)

+
1
3

(
cotε0/ sin2 ε0

) (
u0c1s1 + u2

0s1

)

− 1

3 sin2 ε0

(r0u0c1 + u0s2 + u1s1)

ωA u0
1
2

(u1 + r0s1)
1
3

[
u2 + r1s1 + r0s2 + c1r

2
0 −

u0s2
1

2 sin2 ε0

]

εA c1 + u0 c2 +
1
2

(
u1 − s1r0 + s2

1 cotε0

)
c3 +

1
3

u2 − 2
3

r0s2 + s1s2 cotε0

− 1
6

[
r2

0c1 + r1s1 +
s2

1(u0 + c1)

sin2 ε0

]

+
s1 cotε0

2
(r0c1 − c1s1 cotε0)

χA s1/ sinε0
1

sinε0
[s2 + r0c1 − s1 cotε0(u0 + c1)]

1
sinε0

[
s3 + r0

[
c2 − 1

2
r0s1 +

(
1
2

s2
1 − u0c1

)
cotε0

]

− (s1s2 + u0s2 + c2s2) cotε0

−1
2

(
s1u1 + s1c2 + c2

1s1 cotε0

)
cotε0

+
1
2

r1c1 + s1c
2
1 +

1

sin2 ε0

u0c1s1

+
s3

1

sin3 ε0

(
1
6
− 1

2
cosε2

0

)
+ u2

0s1

(
1
2
+ cotε2

0

)]

pA r0 − s1 cotε0
1
2

(
r1 − r0c1 cotε0 +

u0s1

sin2 ε0

)
− s2 cotε0

+
s1c1

2

(
1+ 2 cot2 ε0

)
−s3 cotε0 − u0c1s1

2 sin2 ε0

cotε0

+
1
3

[r2 + cotε0 (c1s2 cotε0 − r0c2 + s2c1)]

+
1

3 sin2 ε0

(
2c2s1 − u2

0s1 + 2s2u0 + s2c1

)

− 1
6

[(
r2

1s1 − r1c1

)
cotε0 − r0c

2
1 + r0s2

1

]

+
1

6 sin2 ε0

[(
s3

1 − c2
1s1

)
cotε0 + s1u1

]

Precession of the equator, P03 solution:

ψA = 5038′′.481507t − 1′′.0790069t2 − 0′′.00114045t3

+ 0′′.000132851t4 − 0′′.0000000951t5

ωA = ε0 − 0′′.025754t + 0′′.0512623t2 − 0′′.00772503t3

− 0′′.000000467t4 + 0′′.0000003337t5 (37)

with ε0 = 84381′′.406.

Precession of the ecliptic, P03 solution:

PA = + 4′′.199094t + 0′′.1939873t2 − 0′′.00022466t3

− 0′′.000000912t4 + 0′′.0000000120t5

QA = − 46′′.811015t + 0′′.0510283t2 + 0′′.00052413t3

− 0′′.000000646t4 − 0′′.0000000172t5. (38)

7.2. Final expressions for the derived angles
and GMST

The classical “general precession,” which mixes the motion of
the equator in the GCRS and the motion of the ecliptic in the
ICRS (and moreover may not be defined in the framework of

General Relativity without fundamental problems) should no
longer be regarded as a primary precession quantity. It is con-
sidered here as a derived quantity, along with the other preces-
sion quantities that can be obtained from the primary ones.

The expression for GMST(UT1,TT) provided by Capitaine
et al. (2003b) must be revised in order to take into account the
improvement in the expressions for the precession quantities
(mainly χA andψA). In contrast, the expressions for the peri-
odic part of the quantitys and for the complementary terms in
the equation of the equinoxes (see Capitaine et al. 2003a,b) are
unchanged.

The P03 developments for the quantitiesεA, pA andχA are
given below. The coefficients are in arcseconds and the time
unit is TDB century.

εA = ε0 − 46′′.836769t − 0′′.0001831t2 + 0′′.00200340t3

− 0′′.000000576t4 − 0′′.0000000434t5

pA = 5028′′.796195t + 1′′.1054348t2 + 0′′.00007964t3

− 0′′.000023857t4 − 0′′.0000000383t5

χA = 10′′.556403t − 2′′.3814292t2 − 0′′.00121197t3

+ 0′′.000170663t4 − 0′′.0000000560t5. (39)
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P03 developments for the equatorial precession anglesζA, zA

and θA can be derived from the above developments forψA,
ωA, εA andχA:

ζA = 2′′.650545+ 2306′′.083227t + 0′′.2988499t2

+ 0′′.01801828t3 − 0′′.000005971t4 − 0′′.0000003173t5

zA = − 2′′.650545+ 2306′′.077181t + 1′′.0927348t2

+ 0′′.01826837t3 − 0′′.000028596t4 − 0′′.0000002904t5

θA = 2004′′.191903t − 0′′.4294934t2 − 0′′.04182264t3

− 0′′.000007089t4 − 0′′.0000001274t5. (40)

P03 developments for the ecliptic precession anglesπA andΠA

can be derived from the developments for the basic ecliptic
quantitiesPA andQA.

πA = + 46′′.998973t − 0′′.0334926t2 − 0′′.00012559t3

+0′′.000000113t4 − 0′′.0000000022t5

ΠA = 629546′′.7936 − 867′′.95758t + 0′′.157992t2

− 0′′.0005371t3 − 0′′.00004797t4 + 0′′.000000072t5.

(41)

The Greenwich Mean Sidereal Time, expressed in terms of the
Earth Rotation Angleθ, becomes:

GMSTP03(UT1, t) = θ(UT1)+ 0′′.014506

+ 4612′′.156534t + 1′′.3915817t2

− 0′′.00000044t3 − 0′′.000029956t4

− 0′′.0000000368t5. (42)

Note that the secular term in this expression includes a con-
tribution of −3872 µas from nutation (for more details, see
Capitaine et al. 2003b).

This can be converted from angle units to time units by
writing out the ERA and expressing the coefficients in seconds
of Sidereal Time. To a resolution of 0.1 microsecond this gives:

GMSTP03(tu, t) = UT1+ 24110.5493771

+ 8640184.79447825tu
+ 307.4771013 (t− tu)

+ 0.092772110t2− 0.0000002926t3

− 0.00000199708t4

− 0.000000002454t5 (43)

seconds, wheretu is the UT1 andt is the TT, both expressed in
Julian centuries after J2000.

7.3. Expressions for combined frame bias
and precession

7.3.1. The rotation vector approach

Although the most general, and potentially most compact, way
of formulating a model for predicting the orientation of the
Earth’s axis is as a combined bias-precession-nutation effect,
most existing applications treat precession and nutation sepa-
rately as well as having no concept of frame bias. In such cases

it would be convenient to regard bias as a component of preces-
sion and to express the bias-precession combination in a single
model. Such a model could then replace the existing precession
model, enabling GCRS coordinates to be transformed directly
into mean place, leaving the nutation (luni-solar plus planetary)
to be applied as usual in order to obtain true place.

Therefore, our goal is a compact formulation for the matrix:

RPB = P B, (44)

whereRPB combines the individual rotation matrices for frame
bias (B) followed by precession (P). The bias matrixB is given
by the first of expressions (4). The precession matrixP is given
by the second of expressions (4), using the improvedε0, ψA,
ωA andχA from expressions (37) and (39).

The obvious formulation for such a combined bias-
precession model is the traditional 3-rotation approach (5) used
in the IAU 1976 precession model. At first sight, this offers
the prospect of being able to replace the IAU 1976 precession
matrix with one for IAU 2000 combined bias-precession sim-
ply by introducing revised polynomial expressions forζA, zA

andθA. However, because of the non-zero pole displacement
at epoch, thezA andζA angles representing such a combined
bias-precession rotation undergo rapid changes around J2000
that make polynomials int impractical. Thus a simple revision
of IAU 1976 is unfortunately not feasible if the frame bias is
to be included. This effect has also been noted by Fukushima
(2003).

An alternative approach is to model the Cartesian com-
ponents of what we may call therotation vector.It is well
known that any finite rotation of the coordinate frame can
be expressed as the “Euler axis and angle”, which are, re-
spectively, the unit vector along the axis of rotation and the
amount of rotation. These can be combined in various ways,
including the four “Euler symmetrical parameters”, often ex-
pressed in quaternion form, and the three components of the
“Gibbs vector”; see Wertz (1986). A particularly straightfor-
ward three-component option is simply to scale the Euler-axis
unit vector by the amount of rotation in radians. This “rotation
vector” approach proves more efficient for representing the
bias-precession than either the quaternion or the Gibbs vector,
because the precession approximates a constant rotation about
a fixed point (namely the ecliptic pole).

To obtain expressions for the components of the rotation
vector, we generatedRPB for a series of dates between 1800
and 2200, used standard transformations to express the matrix
as the Euler axis and angle, and fitted polynomials int to the
components of the resulting rotation vector:

xr = +0′′.0068192+ 0′′.0260106t + 0′′.0000236t2

−0′′.0038564t3 − 0′′.0000004t4

yr = −0′′.0166171+ 2004′′.1919789t − 0′′.4294924t2

−0′′.0000697t3 + 0′′.0000092t4

zr = −0′′.0146000− 4612′′.1603744t − 1′′.3915844t2

+0′′.0000006t3 + 0′′.0000300t4. (45)
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To express the vector (xr, yr, zr) as the rotation matrixRPB, we
first decompose it into the amount of rotation in radians:

φ =
(
x2

r + y
2
r + z2

r

)1/2
(46)

and the rotation-axis unit vector:

x = xr/φ, y = yr/φ, z= zr/φ. (47)

Then, writings= sinφ, c = cosφ and f = 1− c, we form the
matrix elements as follows:

RPB '


xx f + c xy f + sz xz f− sy
yx f − sz yy f + c yz f + sx
zx f + sy zy f − sx zz f+ c

 . (48)

Note that the algorithm is computationally very efficient: only
one square root and two trigonometrical functions (of the same
angle) are required, in addition to arithmetic operations.

In expressions (45), the choice of polynomial order and co-
efficient resolution was made on the basis that the formulation
should reproduce the rigorous method to 1µas accuracy over a
400-year time span. A somewhat shorter version, consisting of
11 coefficients of 1µas resolution, delivered 50µas accuracy,
and other compromises are of course possible.

To summarize, given the datet in Julian centuries after
J2000, expressions (45) to (48) can be evaluated to generate
the matrixRPB, and the product of this matrix with the GCRS
vector gives the mean place of date.

7.3.2. The mean pole X and Y approach

The position of the CIP in the GCRS, as defined by IAU
Resolution B1.7, is a function of frame bias, precession and
nutation. The CIP coordinates can be obtained by evaluating
the corresponding sequence of nine or ten coordinate rotations,
or to use the simple expressions forX andY derived from the
improved expressions (37) and (39) for the classical precession
quantitiesψA, ωA andχA and the MHB nutations in longitude
and obliquity.

Taking into account the polynomial part only, the P03 ex-
pressions forX andY are:

XP03 = − 0′′.016617+ 2004′′.191898t − 0′′.4297829t2

− 0′′.19861834t3 + 0′′.000007578t4

+ 0′′.0000059285t5 (49)

YP03 = − 0′′.006951− 0′′.025896t − 22′′.4072747t2

+ 0′′.00190059t3 + 0′′.001112526t4

+ 0′′.0000001358t5. (50)

The purpose of this paper is to provide positions of the CIP
computed to an accuracy of a few microarcseconds over a time
span of a few hundred years, meeting the requirements of high-
accuracy applications. For such a time span, theX, Y formula-
tion achieves a similar accuracy to the classical one based on
the basic precession quantities. The GCRS position of the CIP
provided by expressions (49) and (50) is thus in agreement with
that provided by expressions (37) and (38) to microarcsecond
accuracy for a few centuries. The use of theX,Y coordinates

for long-term studies would require a different development in
trigonometric functions of the precession angles, which will
not be discussed here.

It should be noted that changing from the P00 precession
solution to the P03 solution gives rise to changes of the order of
0.1µas to a fewµas for a century in a few terms of the periodic
part of the expressions for the CIPX, Y and in the polynomial
part of the quantitys+XY/2 that provides the GCRS position of
the CEO. The P03 expression for this latter quantity is, inµas:

(s+ XY/2)P03 = 94.0+ 3808.65t − 122.68t2

− 72574.11t3+ 27.98t4 + 15.62t5. (51)

The only change larger than 0.5 µas with respect to the
IAU 2000 expression for the GCRS position of the CEO is of
2.7 µas in the quadratic term, the other changes all being less
than 0.5 µas.

8. Summary and concluding remarks

In the work described in this paper we have computed new
expressions for precession consistent with the IAU 2000A
precession-nutation model. The precession of the ecliptic has
been derived from the analytical theory VSOP87 fitted to the
JPL ephemerides DE406 for improving the polynomial terms
in the expression for the component of the EMB orbital angu-
lar momentum with respect to a fixed ecliptic. It uses the value
for the mean obliquity of the ecliptic at J2000 as derived from a
fit of the dynamical theory for the Moon to LLR observations.
The equinox offset in the GCRS has been derived from this
fit based on VLBI Earth Orientation Parameters. The model
for the precession of the equator has been obtained by solv-
ing the dynamical precession equations based both on the most
recent expressions for the theoretical contributions to preces-
sion (W94) and on the MHB estimates of the precession rates.
In this computation, we took proper account of all the perturb-
ing effects on the observed quantities.

We have moreover discussed the most suitable precession
quantities to be considered in order to be based on the min-
imum number of variables and to be the best adapted to the
most recent models and observations.

The “rotation vector” method, that is able to express bias
plus precession, has some intuitive appeal, as it specifies the
point near the ecliptic pole about which the rotation occurs,
scaled by the accumulated precession. The rotation vector ex-
pressions (45) are ideal for rapid generation of the precession
matrix in practical software for such purposes as pointing tele-
scopes, and can be extended in order and resolution as required
to meet more demanding needs.

We also provide the solutions for theX, Y coordinates of the
CIP in the GCRS which include precession, nutation and frame
biases and therefore tie the precession nutation directly to the
ICRS by simply providing where the pole is in the sky. Their
advantage is of being close to the parameters that are actually
observed by VLBI, which is the best way of determining the
precession-nutation motion and is not sensitive to an ecliptic.
Note for example that the precession in longitude that is derived
from VLBI is in fact the projection of theX-coordinate of the
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Fig. 4.Comparisons of models for the precession of the ecliptic (quan-
tity PA): differences with respect to the solution P03 provided in this
paper.
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Fig. 5.Comparisons of models for the precession of the ecliptic (quan-
tity QA): differences with respect to the solution P03 provided in this
paper.

CIP on a conventional ecliptic and changing the obliquity of
this conventional ecliptic will change the value in longitude,
whereas the corresponding value forX is independent of the
ecliptic (See Sect. 6.2.3).

Recent papers by other authors, using different methods,
furnish useful comparisons with our results. For example,
Bretagnon et al. (2003) have provided precession expressions
derived from the theory SMART97 of the rotation of a rigid
Earth using the MHB observed precession rate inψA. The pre-
cession of the ecliptic is provided by VSOP87 plus improved
values for planetary masses (IERS 1992). Fukushima (2003)
has used a fit to numerical ephemerides for improving the pre-
cession of the ecliptic and a fit to VLBI data for improving
the precession of the equator, given his solution for nutation.
Table 8 provides a comparison of the different expressions (de-
noted B03 and F03 respectively) and Figs. 4 to 7 compare the
final solution of this paper (denoted P03) for the precession of
the ecliptic and the precession of the equator.

Regarding the precession of the ecliptic, we note the good
agreement with the B03 solution (in the graph the B03 and
W94 plots are practically indistinguishable), differing only, at
the level of precision provided by the figures, by a secular trend,
whereas there are very large discrepancies with respect to L77
(IAU 1976) and F03.
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Fig. 6.Comparisons of models for the precession of the equator (quan-
tity ψA): differences with respect to the solution P03 provided in this
paper.
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Fig. 7.Comparisons of models for the precession of the equator (quan-
tity ωA): differences with respect to the solution P03 provided in this
paper.

Regarding the precession of the equator, we note the
quadratic difference inψA with respect to the IAU 2000
and B03 solutions which can be explained by the fact that both
solutions (except for their secular term) are relative to a rigid
Earth. The large discrepancy inωA with respect to F03 cannot
be explained simply by the difference in the expressions for the
ecliptic precession on which the solutions forωA are based.

The work described here has taken advantage of the best
available observations (VLBI for the equator, LLR for the
ecliptic), of the most recent theories for the Earth (VSOP87)
and the Moon (ELP2000), and the most precise numerical
ephemerides (DE406), to develop expressions of the preces-
sion of the equator and the ecliptic that are compliant with the
IAU 2000 resolutions and that are dynamically consistent.

Future VLBI observations covering a longer period of time
will allow improved separation between the estimates of pre-
cession rates and amplitudes of long period nutation. They will
also allow thet2 terms in the developments to be estimated,
providing an indirect access to the motion of the ecliptic.
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Table 8.Comparisons between expressions for the basic precession quantities.

Source t0 t t2 t3 t4

IAU1976 (L77) 5038.7784 −1.07259 −0.001147
IAU2000 5038.478750 −1.07259 −0.001147
B03 5038.478750 −1.0719530 −0.00114366 0.000132832
F03 ψA 5038.478143 −1.0791653 −0.00110654 0.000129144
P03prel 5038.478750 −1.0790091 −0.00114044 0.000132851
P03 5038.481507 −1.0790069 −0.00114045 0.000132851
IAU1976 (L77) 84381.448 0.0 0.05127 −0.007726
IAU2000 84381.448 −0.025240 0.05127 −0.007726
B03 84381.4088 −0.026501 0.0512769 −0.00772723 −0.000000492
F03 ωA 84381.4062 −0.021951 0.0539411 −0.00719621 +0.000001907
P03prel 84381.406 −0.025240 0.0512623 −0.00772502 −0.000000467
P03 84381.406 −0.025754 0.0512623 −0.00772503 −0.000000467
IAU1976 (L77) +4.1976 0.19447 −0.000179
IAU2000 +4.1976 0.19447 −0.000179
B03 +4.199604 0.1939715 −0.00022350 −0.000001035
F03 PA +4.197822 0.1939782 −0.00010053 +0.000000097
P03 +4.199094 0.1939873 −0.00022466 −0.000000912
IAU1976 (L77) −46.8150 0.05059 +0.000344
IAU2000 −46.8150 0.05059 +0.000344
B03 −46.809550 0.0510421 +0.00052228 −0.000000569
F03 QA −46.812649 0.0483315 −0.00000879 −0.000000215
P03 −46.811015 0.0510283 +0.00052413 −0.000000646
IAU1976 (L77) 84381.448 −46.8150 −0.00059 0.001813
IAU2000 84381.448 −46.84024 −0.00059 0.001813
B03 84381.4088 −46.836051 −0.0001667 0.0019991 −0.000000523
F03 εA 84381.4062 −46.834600 −0.0001700 0.00200000
P03prel 84381.406 −46.836255 −0.0001831 0.00200340 −0.000000576
P03 84381.406 −46.836769 −0.0001831 0.00200340 −0.000000576
IAU1976 (L77) +10.5526 −2.38064 −0.001125
IAU2000 +10.5526 −2.38064 −0.001125
B03 +10.557686 −2.3813769 −0.00121258 +0.000170238
F03 χA +10.553205 −2.3815525 −0.00106446 −0.000140596
P03prel +10.556403 −2.3814277 −0.00121196 +0.000170663
P03 +10.556403 −2.3814292 −0.00121197 +0.000170663
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