
The re-definition of the astronomical unit of length: reasons and consequences

N. Capitaine⁽¹⁾, S. Klioner⁽²⁾, D.D. McCarthy⁽³⁾

⁽¹⁾: Observatoire de Paris / SYRTE, France
 ⁽²⁾: Lohrmann Observatory, Dresden Technical University, Germany
 ⁽³⁾: US Naval Observatory, USA

What is the astronomical unit?

Traditionally it has been considered to be a measure of the mean distance of the Earth from the Sun.

Originally it was regarded as the length of the semi-major axis of the Earth's orbit.

The practice of using the value of the Gaussian constant, *k* (Gauss, 1809) as a fixed constant which served to define the au has been in use, unofficially since the 19 th century and officially since 1938.

The "old" definition

• The astronomical unit of length is such that the Newtonian gravitational constant G is equal to the square of the Gaussian constant k

 $G = k^2 = 0.000\ 295\ 912\ 208\ 285\ 591\ 102\ 5$

provided that the mass of the Sun and the day (86400 SI seconds) are taken as the units of mass and time, respectively.

The Gaussian constant $k = 0.017 \ 202 \ 098 \ 95$ is a defining constant.

• The need for a specific scale unit in planetary orbit analyses was due to the lack of precise distance measurements in the solar system.

• The concept is similar to other cases when a unit is defined indirectly by fixed values of some natural constants (e.g. $G = c = \hbar = 1$ for the geometrized units)

IAU 1976 definition of the astronomical unit

«The astronomical unit of length is that length (A) for which the Gaussian gravitational constant (*k*) takes the value of 0.01720209895 when the units of measurements are the astronomical unit of length, mass and time.

The dimensions of k^2 are those of the constant of gravitation (G), i.e., $L^3M^{-1}T^{-2}$. The term "unit distance" is also for the length A. »

Equivalently (cf. The SI brochure): « The radius of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with an angular frequency of 0.017 202 098 95 radians per day. »

Consequences of the current definition of the astronomical unit

- The scale distance in the solar system is provided by the value, A, of the astronomical unit in metres that is fitted to a planetary ephemeris.
- The length of astronomical unit in Système International (SI) meters depends on the theory of motion and observations being used.
- The value in SI units of $GM_{\rm S}$ is calculated by the formula: $GM_{\rm S} = A^3 k^2 / D^2$

Defining constants:					
	Gaussian gravitational constant Speed of light	$k = 0.017 \ 202 \ 0.098 \ 95$ $c = 299 \ 792 \ 458 \ m \ s^{-1}$			
	y constants:	c = 233 732 436 m s			
3.	Light-time for unit distance	$\tau_{\rm A} = 499.004.782 {\rm s}$			
	_	[499-004-7838]			
4.	Equatorial radius for Earth	$a_{\rm e} = 6378\ 140\ {\rm m}$			
	1	[6378 137]			
5.	Dynamical form-factor for Earth	$J_2 = 0.001\ 082\ 63$			
		[0.001 082 626]			
6.	Geocentric gravitational constant	$GE = 3.986\ 005 \times 10^{14}\ { m m}^3\ { m s}^{-2}$			
	U U	$[3.986\ 004\ 33\ \dots \times 10^{14}]$			
7.	Constant of gravitation	$G = 6.672 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$			
8.	Ratio of mass of Moon to that of Earth	$\mu = 0.012 300 02$			
		[0.012 300 038]			
9.	General precession in longitude, per Julian				
	century, at standard epoch 2000	$\rho = 5029^{0}0966$			
10.	Obliquity of the ecliptic, at standard				
	epoch 2000	$\epsilon = 23^{\circ} \ 26' \ 21'' 448$			
	•				

The IAU 1976 System of astronomical constants

Derived constants:

11.	Constant of nutation, at standard ep	
\sim	Unit distance	$c\tau_A = A = 1.49597870 \times 10^{11}\mathrm{m}$
		$[1.49597870691 \times 10^{11}]$
13.	Solar parallax	$\arcsin(a_e/A) = \pi_{\odot} = 8^{p}794\ 148$
		[8 ⁹ 794 144]
14.	Constant of aberration, for standard	epoch 2000 $\kappa = 20^{1/49} 552$
15.	Flattening factor for the Earth	f = 0.003 352 81
		= 1/298.257
16.	Heliocentric gravitational constant	$A^{3}k^{2}/D^{2} = GS = 1.327\ 124\ 38 \times 10^{20}\ m^{3}\ s^{-2}$
		$[1.327\ 124\ 40\ \ldots \times\ 10^{20}]$
17.	Ratio of mass of Sun to that	(GS)/(GE) = S/E = 332.946.0
	of the Earth	[332 946 050 895]
18.	Ratio of mass of Sun to that	$(S/E)/(l + \mu) = 328\ 900.5$
	of Earth + Moon	[328 900 561 400]
19.	Mass of the Sun	$(GS)/G = S = 1.9891 \times 10^{30} \text{ kg}$

The IAU 2009 System of astronomical constants

- Table 1

Auxiliary Defining Constants					
	Gaussian gravitational constant	$1.720209895 \times 10^{-2}$	[18, 15]		
$L_{\rm G}$	1-d(TT)/d(TCG)	$6.969290134 \times 10^{-10}$	[19, 32]		
$L_{\mathbf{B}}$	1-d(TDB)/d(TCB)	$1.550519768 \times 10^{-8}$	[20]		
$TDB_0^{[b]}$	TDB-TCB at T ₀	-6.55×10^{-5} s	[20]		
$\theta_0^{[e]}$	Earth rotation angle at J2000.0	0.7790572732640 revolutions	[19, 5]		
$d\theta/dUT1^{[a]}$	Rate of advance of Earth rotation an-	1.00273781191135448 revolutions	[19, 5]		
	gle	UT1-day ⁻¹	_		

Constant	Description	Value	Uncertainty	Reference	
G	Constant of gravitation	Natural Measurable Constants $6.67428 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$	$_{ m m^{3}kg^{-1}s^{-2}}^{ m 6.7 imes 10^{-15}}$	CODATA, 2006	
L_{C}	Astronomical unit Average value of 1-d(TCG)/d(TCB)	Other Constants 1.49597870700 $\times 10^{11}$ m 1.48082686741 $\times 10^{-8}$	3 m 2 ×10 ⁻¹⁷	Pitjeva & Standish 2009	
GMS	Heliocentric gravitational constant	Body Constants ^[e] $1.32712442099 \times 10^{20} \text{ m}^3 \text{s}^{-2}$ (TCB-compatible) $1.32712440041 \times 10^{20} \text{ m}^3 \text{s}^{-2}$ (TDB-compatible)	$1.0 \times 10^{10} \text{ m}^3 \text{s}$ (TCB-compati $1.0 \times 10^{10} \text{ m}^3 \text{s}$ (TDB-compati	$_{\rm ble)}$ from the ua fitted to E $^{-2}$)E 421

Joint Discussion 7 – 28 th IAU GA, 20-31 August 2012, Beijing, China

The IAU 2009 System of astronomical constants - definitions and values

- The IAU 2009 System of astronomical constants (IAU 2009 Resolution B2) retains the IAU 1976 definition of the astronomical unit.
- The TDB-compatible value of the astronomical unit (Table 1) is an average (Pitjeva and Standish 2009) of recent estimates for the astronomical unit defined by *k*.
- The TDB-compatible value for *GM*_S (Table 1) is consistent with the value of Table 1 for the astronomical unit to within the errors of the estimate.

Modern context

- There is a need for a self-consistent set of units and numerical standards for use in modern dynamical astronomy in the framework of General Relativity,
- the accuracy of modern range measurements makes the use of relative distances unnecessary: BCRS distances between solar system bodies are now known very well so that there is no need to decouple angular positions and distances,
- modern planetary ephemerides (INPOP08, DE423, EPM2008) can provide *GM*_S directly in SI units and even trace the expected time-dependence of this quantity,
- extending the current definition of the astronomical unit to the relativistic framework would require several additional conventions making the definition even more complicated.

1. Proposal

- The astronomical unit be re-defined to be a conventional unit of length,
- astronomical unit = L_A metres exactly, L_A being a defining number,
- The defining number should be, for continuity reason, the value for the current best estimate of the ua in m as adopted by IAU 2009 Resolution B2

The CCU (of the CIPM) declared its support to move to a fixed relationship to the SI metre through a defining number

2. Consequences

- *k* will not have a role any more; it should be deleted from the IAU
 System of astronomical constants,
- the experimental determination of the ua in SI unit, will be abandoned,
- *GM*_{Sun} will be determined experimentally,
- the ua would limit its role to that of a unit of length of "convenient" size for some applications.

The IAU 2012 Resolution proposal

- the astronomical unit be re-defined to be a conventional unit of length equal to 149 597 870 700 m exactly, as adopted in IAU 2009 Resolution B2
- this definition be used with all time scales (such as TCB, TDB, TCG, TT, etc.),
- the Gaussian gravitational constant *k* be deleted from the system of astronomical constants,
- the value of the heliocentric gravitation constant, *GM*_S, be determined observationally in SI units,
- the unique symbol au be used for the astronomical unit.

3. The advantages with respect to the old definition

- ✓ Eliminates deviation from SI
- Eliminates dependence of the unit on theories of motion on theories of motion
- ✓ Provides a self-consistent set of units in the relativistic framework
- ✓ Avoids time-dependent units if time variation of solar mass is considered
- ✓ Permits direct determination of time variation in solar mass parameter GM_{Sun} in SI units

4. Impacts of the change

- Mainly concerns those in the field of high-accuracy solar system dynamics.
- Although astronomical unit defines parsec and thus the whole astronomical distance ladder, the relative difference between the old and the new definitions will not exceed 10⁻¹⁰, so no significant effect considering relative errors of cosmic distances outside solar system.